• Title/Summary/Keyword: Image processing device

Search Result 487, Processing Time 0.024 seconds

Hardware Architecture for Entropy Filter Implementation (엔트로피 필터 구현에 대한 Hardware Architecture)

  • Sim, Hwi-Bo;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.226-231
    • /
    • 2022
  • The concept of information entropy has been widely applied in various fields. Recently, in the field of image processing, many technologies applying the concept of information entropy have been developed. As the importance and demand of computer vision technologies increase in modern industry, real-time processing must be possible in order for image processing technologies to be efficiently applied to modern industries. Extracting the entropy value of an image is difficult to process in real-time due to the complexity of computation in software, and a hardware structure of an image entropy filter capable of real-time processing has never been proposed. In this paper, we propose for the first time a hardware structure of a histogram-based entropy filter that can be processed in real time using a barrel shifter. The proposed hardware was designed using Verilog HDL, and Xilinx's xczu7ev-2ffvc1156 was set as the target device and FPGA was implemented. As a result of logic synthesis using the Xilinx Vivado program, it has a maximum operating frequency of 750.751 MHz in a 4K UHD high-resolution environment, and it processes more than 30 images per second and satisfies the real-time processing standard.

Acceleration of Feature-Based Image Morphing Using GPU (GPU를 이용한 특징 기반 영상모핑의 가속화)

  • Kim, Eun-Ji;Yoon, Seung-Hyun;Lee, Jieun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.13-24
    • /
    • 2014
  • In this study, a graphics-processing-unit (GPU)-based acceleration technique is proposed for the feature-based image morphing. This technique uses the depth-buffer of the graphics hardware to calculate efficiently the shortest distance between a pixel and the control lines. The pairs of control lines between the source image and the destination image are determined by user's input, and the distance function of each control line is rendered using two rectangles and two cones. The distance between each pixel and its nearest control line is stored in the depth buffer through the graphics pipeline, and this is used to conduct the morphing operation efficiently. The pixel-unit morphing operation is parallelized using the compute unified device architecture (CUDA) to reduce the morphing time. We demonstrate the efficiency of the proposed technique using several experimental results.

Development of Real-Time Displacement Measurement System for Multiple Moving Objects of construction structures using Image Processing Techniques (영상처리기술을 이용한 건축 구조물의 실시간 변위측정 시스템의 개발)

  • Kim, Sung-Wook;Seo, Jin-Ho;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.764-769
    • /
    • 2003
  • The paper introduces a development result for displacement measurement system of multiple moving objects based on image processing technique. The image processing method adopts inertia moment theory for obtaining the centroid of the targets and basic processing algorithms of gray, binary, closing, labeling and etc. To get precise displacement measurement in spite of multiple moving targets, a CCD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in directions of X -Y coordinates. The precise alignment device is pan /tilt of X - Y type and the pan/tilt is controlled by DC servomotors which are driven by 80c196kc microprocessor based controller. The centers of the fiducial marks are obtained by a inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are stored in the database system in a real time. By using database system and internet, displacement data can be confirmed at a great distance and analyzed. The developed system shows the effectiveness such that it realizes the precision about 0.12mm in the position control of X -Y coordinates.

  • PDF

Development of Displacement Measurement System of Structures Using Image Processing Techniques (영상처리기술을 이용한 구조물의 변위 측정 시스템의 개발)

  • 김성욱;김상봉;서진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.673-679
    • /
    • 2004
  • In this paper, we develop the displacement measurement system of multiple moving objects based on image processing techniques. The image processing method adopts inertia moment theory for obtaining the centroid measurement of the targets and basic processing algorithm of gray, binary, closing, labeling and so on. To get precise displacement measurement in spite of multiple moving targets, a CGD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in direction of XY-coordinates. The precise alignment device is pan/tilt of XY-type and the pan/tilt is controlled by DC servomotors which are driven by a microprocessor. Morover, the centers of fiducial marks are obtainted by an inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are also stored in the database system in a real time. By using database system and internet, the displacement datum can be confirmed at a great distance and analyzed. Finally, the effectiveness of developed system is shown in experimental results and realized the precision about 0.12[mm] in the position control of XY-coordinates.

Study on the Content Development of Mobile AR_HMD through a Real Time 360 Image Processing. (360° 실시간 영상처리를 통한 모바일 AR_HMD 콘텐츠 개발을 위한 연구)

  • Lee, Changhyun;Kim, Youngseop;Kim, Yeonmin;Park, Inho;Choi, JaeHak;Lee, Yonghwan;Han, Woori
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.66-69
    • /
    • 2016
  • Recently, augmented reality and virtual reality in the ICT sector have been highlighted. So also interested in related HMD areas to facilitate contact with the VR content is being attend. This paper proposes a method for implementing to the virtual reality through the mobile HMD device with the real time 360 image. This system is required the real time 360 image streaming server configuration and image processing for augmented reality and virtual reality. The configuration of the streaming server is configured the DB server to store images and the relay server that can relay images to other devices. Augmented image processing module is composed based on markerless tracking, and there are four modules that are recognition, tracking, detecting and learning module. Also, the purpose of this paper is shown the augmented 360 image processing through the Mobile HMD.

디지탈 화상처리를 이용한 사출제품의 길이측정용 시각검사시스템 개발에 관한 연구

  • 김재열;박환규;오보석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.281-285
    • /
    • 1996
  • In this paper, I made visual inspection system using Vision Board and it is consist of an illuminator (a fluorescent lamp), image input device(CCD(Charge)Coupled Device) camera), image processing system(Vision Board(FARAMVB-02), image output device(videomonitor, printer), a measuring instrument(TELMN1000). Length measurement by visual inspection system is used 100mm gauge block instead of calculating distance between camera and object, it measured horizontal and vertical length factor from 400mm to 650mm by increasing 50mm. In this place, measured horizontal and vertical length factor made use of length measurement of a injection. A measuring instrument used to compare a measured length of a injection visual inspection system with it. In conclusion, length measurement of a injection compared a measuring instrument withvisual inspecion system using length factor of 100mm guage block. Maximum error of length compared two devices a measuring instrument with visual inspection system is 0.55mm. And operation program is made up Borland C++ 3.1. By changing, it is applied to various uses.

  • PDF

An Implementation of ISP for CMOS Image Sensor (CMOS 카메라 이미지 센서용 ISP 구현)

  • Sonh, Seung-Il;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.555-562
    • /
    • 2007
  • In order to display Bayer input stream received from CMOS image sensor to the display device, image signal processing must be performed. That is, the hardware performing the image signal processing for Bayer data is called ISP(Image Signal Processor). We can see real image through ISP processing. ISP executes functionalities for gamma correction, interpolation, color space conversion, image effect, image scale, AWB, AE and AF. In this paper, we obtained the optimum algorithm through software verification of ISP module for CMOS camera image sensor and described using VHDL and verified in ModelSim6.0a simulator. Also we downloaded into Xilinx XCV-1000e for the designed ISP module and completed the board level verification using PCI interface.

Quantitative Evaluation of Fiber Dispersion of the Fiber-Reinforced Cement Composites Using an Image Processing Technique (이미지 프로세싱 기법을 이용한 섬유복합재료의 정량적인 섬유분산성 평가)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jeong-Su;Kim, Jin-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.148-156
    • /
    • 2007
  • The fiber dispersion in fiber-reinferced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion in the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, a new evaluation method is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a charged couple device (CCD) camera through a microscope, the fiber dispersion is evaluated using an image processing technique and statistical tools. In this image processing technique, the fibers are more accurately detected by employing an enhanced algorithm developed based on a discriminant method and watershed segmentation. The influence of fiber orientation on the fiber dispersion evaluation was also investigated via shape analyses of fiber images.

Hardware Implementation of Fog Feature Based on Coefficient of Variation Using Normalization (정규화를 이용한 변동계수 기반 안개 특징의 하드웨어 구현)

  • Kang, Ui-Jin;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.819-824
    • /
    • 2021
  • As technologies related to image processing such as autonomous driving and CCTV develop, fog removal algorithms using a single image are being studied to improve the problem of image distortion. As a method of predicting fog density, there is a method of estimating the depth of an image by generating a depth map, and various fog features may be used as training data of the depth map. In addition, it is essential to implement a hardware capable of processing high-definition images in real time in order to apply the fog removal algorithm to actual technologies. In this paper, we implement NLCV (Normalize Local Coefficient of Variation), a feature of fog based on coefficient of variation, in hardware. The proposed hardware is an FPGA implementation of Xilinx's xczu7ev-2ffvc1156 as a target device. As a result of synthesis through the Vivado program, it has a maximum operating frequency of 479.616MHz and shows that real-time processing is possible in 4K UHD environment.

Development of Automatic Cucumber Grade System with Using a Color Image processing (컬러 영상처리를 이용한 오이 자동 선별 제어 시스템 개발)

  • Son, Hyun-Woo;Cho, Nae-Su;Kwon, Woo-Hyen;Lim, Sung-Woon;Choi, Yon-Ho;Kim, Woo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.453-455
    • /
    • 2004
  • The quality of agricultural products is represented a degree of freshness and a special quality related to a commercial value. To grade cucumber, the charge-coupled device(CCD) camera is only used to measure external qualities like color. size and degree of bended cucumber The processed area of the image replaces the weigh of cucumber. That means there is no longer used the weighing beams. The system consists of Image processing system and distributing system. This paper explains the structure and movement of the automatic grade system and applies the algorithm for deformed cucumber and characteristics of cucumber through image processing to the grade system.

  • PDF