• Title/Summary/Keyword: Image prediction model

Search Result 312, Processing Time 0.029 seconds

Prediction and factors of Seoul apartment price using convolutional neural networks (CNN 모형을 이용한 서울 아파트 가격 예측과 그 요인)

  • Lee, Hyunjae;Son, Donghui;Kim, Sujin;Oh, Sein;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.603-614
    • /
    • 2020
  • This study focuses on the prediction and factors of apartment prices in Seoul using a convolutional neural networks (CNN) model that has shown excellent performance as a predictive model of image data. To do this, we consider natural environmental factors, infrastructure factors, and social economic factors of the apartments as input variables of the CNN model. The natural environmental factors include rivers, green areas, and altitudes of apartments. The infrastructure factors have bus stops, subway stations, commercial districts, schools, and the social economic factors are the number of jobs and criminal rates, etc. We predict apartment prices and interpret the factors for the prices by converting the values of these input variables to play the same role as pixel values of image channels for the input layer in the CNN model. In addition, the CNN model used in this study takes into account the spatial characteristics of each apartment by describing the natural environmental and infrastructure factors variables as binary images centered on each apartment in each input layer.

MODIFIED CONVOLUTIONAL NEURAL NETWORK WITH TRANSFER LEARNING FOR SOLAR FLARE PREDICTION

  • Zheng, Yanfang;Li, Xuebao;Wang, Xinshuo;Zhou, Ta
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.6
    • /
    • pp.217-225
    • /
    • 2019
  • We apply a modified Convolutional Neural Network (CNN) model in conjunction with transfer learning to predict whether an active region (AR) would produce a ≥C-class or ≥M-class flare within the next 24 hours. We collect line-of-sight magnetogram samples of ARs provided by the SHARP from May 2010 to September 2018, which is a new data product from the HMI onboard the SDO. Based on these AR samples, we adopt the approach of shuffle-and-split cross-validation (CV) to build a database that includes 10 separate data sets. Each of the 10 data sets is segregated by NOAA AR number into a training and a testing data set. After training, validating, and testing our model, we compare the results with previous studies using predictive performance metrics, with a focus on the true skill statistic (TSS). The main results from this study are summarized as follows. First, to the best of our knowledge, this is the first time that the CNN model with transfer learning is used in solar physics to make binary class predictions for both ≥C-class and ≥M-class flares, without manually engineered features extracted from the observational data. Second, our model achieves relatively high scores of TSS = 0.640±0.075 and TSS = 0.526±0.052 for ≥M-class prediction and ≥C-class prediction, respectively, which is comparable to that of previous models. Third, our model also obtains quite good scores in five other metrics for both ≥C-class and ≥M-class flare prediction. Our results demonstrate that our modified CNN model with transfer learning is an effective method for flare forecasting with reasonable prediction performance.

An SAD-Based Selective Bi-prediction Method for Fast Motion Estimation in High Efficiency Video Coding

  • Kim, Jongho;Jun, DongSan;Jeong, Seyoon;Cho, Sukhee;Choi, Jin Soo;Kim, Jinwoong;Ahn, Chieteuk
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.753-758
    • /
    • 2012
  • As the next-generation video coding standard, High Efficiency Video Coding (HEVC) has adopted advanced coding tools despite the increase in computational complexity. In this paper, we propose a selective bi-prediction method to reduce the encoding complexity of HEVC. The proposed method evaluates the statistical property of the sum of absolute differences in the motion estimation process and determines whether bi-prediction is performed. A performance comparison of the complexity reduction is provided to show the effectiveness of the proposed method compared to the HEVC test model version 4.0. On average, 50% of the bi-prediction time can be reduced by the proposed method, while maintaining a negligible bit increment and a minimal loss of image quality.

Study on Flood Prediction System Based on Radar Rainfall Data (레이더 강우자료에 의한 홍수 예보 시스템 연구)

  • Kim, Won-Il;Oh, Kyoung-Doo;Ahn, Won-Sik;Jun, Byong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1153-1162
    • /
    • 2008
  • The use of radar rainfall for hydrological appraisal has been a challenge due to the limitations in raw data generation followed by the complex analysis needed to come up with precise data interpretation. In this study, RAIDOM (RAdar Image DigitalizatiOn Method) has been developed to convert synthetic radar CAPPI(Constant Altitude Plan Position Indicator) image data from Korea Meteorological Administration into digital format in order to come up with a more practical and useful radar image data. RAIDOM was used to examine a severe local rainstorm that occurred in July 2006 as well as two other separate events that caused heavy floods on both upper and mid parts of the HanRiver basin. A distributed model was developed based on the available radar rainfall data. The Flood Hydrograph simulation has been found consistent with actual values. The results show the potentials of RAIDOM and the distributed model as tools for flood prediction. Furthermore, these findings are expected to extend the usefulness of radar rainfall data in hydrological appraisal.

MPIL: Market prediction through image learning of unstructured and structured data (비정형, 정형 데이터의 이미지 학습을 활용한 시장예측)

  • Lee, Yoon Seon;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.16-21
    • /
    • 2021
  • Financial time series analysis plays a very important role economically and socially in modern society and is an important task affecting global development, but due to difficulties such as a lot of noise and uncertainty, financial time series analysis prediction is a difficult research topic. In this paper, we propose a market prediction method (MPIL) by converting unstructured data and structured data into images. For market prediction, it analyzes SNS and news data, which is unstructured data for n days, and converts the market data, which is structured data, to an image with the GADF algorithm, and predicts an ultra-short market that predicts the price of n+1 days through image learning. MPIL has an average accuracy of 56%, which is higher than the 50% average accuracy of the model that predicts the market with LSTM by using sentiment analysis used for existing market forecasting.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Integration of GIS-based RUSLE model and SPOT 5 Image to analyze the main source region of soil erosion

  • LEE Geun-Sang;PARK Jin-Hyeog;HWANG Eui-Ho;CHAE Hyo-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.357-360
    • /
    • 2005
  • Soil loss is widely recognized as a threat to farm livelihoods and ecosystem integrity worldwide. Soil loss prediction models can help address long-range land management planning under natural and agricultural conditions. Even though it is hard to find a model that considers all forms of erosion, some models were developed specifically to aid conservation planners in identifying areas where introducing soil conservation measures will have the most impact on reducing soil loss. Revised Universal Soil Loss Equation (RUSLE) computes the average annual erosion expected on hillslopes by multiplying several factors together: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practice (P). The value of these factors is determined from field and laboratory experiments. This study calculated soil erosion using GIS-based RUSLE model in Imha basin and examined soil erosion source area using SPOT 5 high-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area applying field survey method in common areas (dry field & orchard area) that are difficult to confirm soil erosion source area using satellite image.

  • PDF

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Development of a Malignancy Potential Binary Prediction Model Based on Deep Learning for the Mitotic Count of Local Primary Gastrointestinal Stromal Tumors

  • Jiejin Yang;Zeyang Chen;Weipeng Liu;Xiangpeng Wang;Shuai Ma;Feifei Jin;Xiaoying Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.344-353
    • /
    • 2021
  • Objective: The mitotic count of gastrointestinal stromal tumors (GIST) is closely associated with the risk of planting and metastasis. The purpose of this study was to develop a predictive model for the mitotic index of local primary GIST, based on deep learning algorithm. Materials and Methods: Abdominal contrast-enhanced CT images of 148 pathologically confirmed GIST cases were retrospectively collected for the development of a deep learning classification algorithm. The areas of GIST masses on the CT images were retrospectively labelled by an experienced radiologist. The postoperative pathological mitotic count was considered as the gold standard (high mitotic count, > 5/50 high-power fields [HPFs]; low mitotic count, ≤ 5/50 HPFs). A binary classification model was trained on the basis of the VGG16 convolutional neural network, using the CT images with the training set (n = 108), validation set (n = 20), and the test set (n = 20). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated at both, the image level and the patient level. The receiver operating characteristic curves were generated on the basis of the model prediction results and the area under curves (AUCs) were calculated. The risk categories of the tumors were predicted according to the Armed Forces Institute of Pathology criteria. Results: At the image level, the classification prediction results of the mitotic counts in the test cohort were as follows: sensitivity 85.7% (95% confidence interval [CI]: 0.834-0.877), specificity 67.5% (95% CI: 0.636-0.712), PPV 82.1% (95% CI: 0.797-0.843), NPV 73.0% (95% CI: 0.691-0.766), and AUC 0.771 (95% CI: 0.750-0.791). At the patient level, the classification prediction results in the test cohort were as follows: sensitivity 90.0% (95% CI: 0.541-0.995), specificity 70.0% (95% CI: 0.354-0.919), PPV 75.0% (95% CI: 0.428-0.933), NPV 87.5% (95% CI: 0.467-0.993), and AUC 0.800 (95% CI: 0.563-0.943). Conclusion: We developed and preliminarily verified the GIST mitotic count binary prediction model, based on the VGG convolutional neural network. The model displayed a good predictive performance.

Empirical Investigations to Plant Leaf Disease Detection Based on Convolutional Neural Network

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.115-120
    • /
    • 2023
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.