• 제목/요약/키워드: Image prediction model

검색결과 312건 처리시간 0.032초

오피스 실내 색채계획을 위한 이미지별 예측모델 작성 (Developing the Prediction Model for Color Design by the Image Types in the Office Interior)

  • 진은미;이진숙
    • 한국실내디자인학회논문집
    • /
    • 제32호
    • /
    • pp.97-104
    • /
    • 2002
  • The purpose of this study is to suggest the prediction model for the color design by the image types in the office interior. This prediction model of the color design is for the more comfortable environment by using suitable, various colors fitted with business functions. In this research, we carried out the evaluation experiment with the variables such as the color on ceiling, wall, floor and the harmonies of color schemes. We set the prediction index through the multi-regression analysis. And the prediction model was made by these results. The design methods by the prediction model are as follows. 1) The $\ulcorner$variable$\lrcorner$ image was deeply influenced by the value and chroma and it was marked high in low value and high chroma and the harmonies of contrast and different color. 2) The $\ulcorner$comfortable$\lrcorner$ image was related to the value and chroma and it was marked high in high value and low chroma and harmonies of homogeneity and similar. 3) The $\ulcorner$warm$\lrcorner$ image was greatly influenced by the hue and the harmony of color schemes, and it was marked high in the warm colors and harmonies of homogeneity.

Image-based rainfall prediction from a novel deep learning method

  • Byun, Jongyun;Kim, Jinwon;Jun, Changhyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2021
  • Deep learning methods and their application have become an essential part of prediction and modeling in water-related research areas, including hydrological processes, climate change, etc. It is known that application of deep learning leads to high availability of data sources in hydrology, which shows its usefulness in analysis of precipitation, runoff, groundwater level, evapotranspiration, and so on. However, there is still a limitation on microclimate analysis and prediction with deep learning methods because of deficiency of gauge-based data and shortcomings of existing technologies. In this study, a real-time rainfall prediction model was developed from a sky image data set with convolutional neural networks (CNNs). These daily image data were collected at Chung-Ang University and Korea University. For high accuracy of the proposed model, it considers data classification, image processing, ratio adjustment of no-rain data. Rainfall prediction data were compared with minutely rainfall data at rain gauge stations close to image sensors. It indicates that the proposed model could offer an interpolation of current rainfall observation system and have large potential to fill an observation gap. Information from small-scaled areas leads to advance in accurate weather forecasting and hydrological modeling at a micro scale.

  • PDF

Adaptive Attention Annotation Model: Optimizing the Prediction Path through Dependency Fusion

  • Wang, Fangxin;Liu, Jie;Zhang, Shuwu;Zhang, Guixuan;Zheng, Yang;Li, Xiaoqian;Liang, Wei;Li, Yuejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4665-4683
    • /
    • 2019
  • Previous methods build image annotation model by leveraging three basic dependencies: relations between image and label (image/label), between images (image/image) and between labels (label/label). Even though plenty of researches show that multiple dependencies can work jointly to improve annotation performance, different dependencies actually do not "work jointly" in their diagram, whose performance is largely depending on the result predicted by image/label section. To address this problem, we propose the adaptive attention annotation model (AAAM) to associate these dependencies with the prediction path, which is composed of a series of labels (tags) in the order they are detected. In particular, we optimize the prediction path by detecting the relevant labels from the easy-to-detect to the hard-to-detect, which are found using Binary Cross-Entropy (BCE) and Triplet Margin (TM) losses, respectively. Besides, in order to capture the inforamtion of each label, instead of explicitly extracting regional featutres, we propose the self-attention machanism to implicitly enhance the relevant region and restrain those irrelevant. To validate the effective of the model, we conduct experiments on three well-known public datasets, COCO 2014, IAPR TC-12 and NUSWIDE, and achieve better performance than the state-of-the-art methods.

합성곱 신경망 및 영상처리 기법을 활용한 피부 모공 등급 예측 시스템 (A Prediction System of Skin Pore Labeling Using CNN and Image Processing)

  • 이태희;황우성;최명렬
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.647-652
    • /
    • 2022
  • 본 논문은 사용자들에 의해 촬영된 피부이미지를 가공하여 데이터 세트를 구축하고, 제안한 영상처리 기법에 의해 모공 특징이미지를 생성하여, CNN(Convolution Neural Network) 모델 기반의 모공 상태 등급 예측 시스템을 구현한다. 본 논문에서 활용하는 피부이미지 데이터 세트는, 피부미용 전문가의 육안 분류 기준에 근거하여, 모공 특징에 대한 등급을 라벨링 하였다. 제안한 영상처리 기법을 적용하여 피부이미지로 부터 모공 특징 이미지를 생성하고, 모공 특징 등급을 예측하는 CNN 모델의 학습을 진행하였다. 제안한 CNN 모델에 의한 모공 특징은 전문가의 육안 분류 결과와 유사한 예측 결과를 얻었으며, 비교 모델(Resnet-50)에 의한 결과보다 적은 학습시간과 높은 예측결과를 얻었다. 본 논문의 본론에서는 제안한 영상처리 기법과 CNN 적용의 결과에 대해 서술하며, 결론에서는 제안한 방법에 대한 결과와 향후 연구방안에 대해 서술한다.

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

PM2.5 Estimation Based on Image Analysis

  • Li, Xiaoli;Zhang, Shan;Wang, Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.907-923
    • /
    • 2020
  • For the severe haze situation in the Beijing-Tianjin-Hebei region, conventional fine particulate matter (PM2.5) concentration prediction methods based on pollutant data face problems such as incomplete data, which may lead to poor prediction performance. Therefore, this paper proposes a method of predicting the PM2.5 concentration based on image analysis technology that combines image data, which can reflect the original weather conditions, with currently popular machine learning methods. First, based on local parameter estimation, autoregressive (AR) model analysis and local estimation of the increase in image blur, we extract features from the weather images using an approach inspired by free energy and a no-reference robust metric model. Next, we compare the coefficient energy and contrast difference of each pixel in the AR model and then use the percentages to calculate the image sharpness to derive the overall mass fraction. Furthermore, the results are compared. The relationship between residual value and PM2.5 concentration is fitted by generalized Gauss distribution (GGD) model. Finally, nonlinear mapping is performed via the wavelet neural network (WNN) method to obtain the PM2.5 concentration. Experimental results obtained on real data show that the proposed method offers an improved prediction accuracy and lower root mean square error (RMSE).

A Recommender System Model Using a Neural Network Based on the Self-Product Image Congruence

  • Kang, Joo Hee;Lee, Yoon-Jung
    • 한국의류학회지
    • /
    • 제44권3호
    • /
    • pp.556-571
    • /
    • 2020
  • This study predicts consumer preference for social clothing at work, excluding uniforms using the self-product congruence theory that also establishes a model to predict the preference for recommended products that match the consumer's own image. A total of 490 Korean male office workers participated in this study. Participants' self-image and the product images of 20 apparel items were measured using nine adjective semantic scales (namely elegant, stable, sincere, refined, intense, luxury, bold, conspicuous, and polite). A model was then constructed to predict the consumer preferences using a neural network with Python and TensorFlow. The resulting Predict Preference Model using Product Image (PPMPI) was trained using product image and the preference of each product. Current research confirms that product preference can be predicted by the self-image instead of by entering the product image. The prediction accuracy rate of the PPMPI was over 80%. We used 490 items of test data consisting of self-images to predict the consumer preferences for using the PPMPI. The test of the PPMPI showed that the prediction rate differed depending on product attributes. The prediction rate of work apparel with normative images was over 70% and higher than for other forms of apparel.

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측 (Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image)

  • 김재정;유용훈;김창복
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.569-575
    • /
    • 2021
  • 딥러닝은 데이터의 품질과 모델에 따라 예측 성능에 차이를 보인다. 본 연구는 발전량 예측에 가장 영향을 주는 일사량 예측을 위한 최적의 딥러닝 모델을 구축하기 위해 다양한 입력 데이터와 다중 딥러닝 모델을 사용하였다. 입력 데이터는 기상청의 기상 데이터와 천리안 기상영상을 기상청 지역의 영상을 분할하여 사용하였다, 본 연구는 기본적인 딥러닝 모델인 DNN, LSTM, CNN 모델에 대해 중간층의 깊이와 노드를 변경하여 일사량을 예측하여, 비교 평가하였다, 또한, 각 모델에서 가장 좋은 오차율을 가진 모델을 연결한 다증 딥러닝 모델을 구축하여 일사량을 예측하였다. 실험 결과로서 다중 딥러닝 모델인 모델 A의 RMSE는 0.0637이며, 모델 B의 RMSE는 0.07062이며, 모델 C의 RMSE는 0.06052로서 단일 모델보다 모델 A 그리고 모델 C의 오차율이 좋았다. 본 연구는 실험을 통해 두 개 이상의 모델을 연결한 모델이 향상된 예측률과 안정된 학습 결과를 보였다.

Modified Particle Filtering for Unstable Handheld Camera-Based Object Tracking

  • Lee, Seungwon;Hayes, Monson H.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권2호
    • /
    • pp.78-87
    • /
    • 2012
  • In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.

  • PDF