• Title/Summary/Keyword: Image pixel

Search Result 2,495, Processing Time 0.027 seconds

LCD Module Initialization and Panel Display for the Virtual Screen of LN2440SBC Embedded Systems (LN2440SBC 임베디드 시스템의 가상 스크린을 위한 LCD 모듈 초기화 및 패널 디스플레이)

  • Oh, Sam-Kweon;Park, Geun-Duk;Kim, Byoung-Kuk
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.452-458
    • /
    • 2010
  • In case of an embedded system with computing resource restrictions such as system power and cpu, the overhead due to displaying data on the computer screen may have a significant influence on the system performance. This paper describes an initialization method for LCD-driving components such as an ARM Core, an LCD controller, and an SPI(serial peripheral interface). It also introduces a pixel display function and a panel display method using virtual screen for reducing the display overhead for an LN2440SBC system with an ARM9-based S3C2440A microprocessor. A virtual screen is a large space of computer memories allocated much larger than those needed for one-time display of an image. Displaying a specific region of a virtual screen is done by assigning it as a view-port region. Such a display is useful in an embedded system when concurrently running tasks produce and display their respective results on the screen; it is especially so when the execution result of each task is partially modified, instead of being totally modified, on its turn and displayed. If the tasks running on such a system divide and make efficient use of the region of the virtual screen, the display overhead can be minimized. For the performance comparison with and without using the virtual screen, two different images are displayed in turn and the amount of time consumed for their display is measured. The result shows that the display time of the former is about 5 times faster than that of the latter.

A Feasibility Study of a SiPM Based Intraoperative Beta Imaging/Gamma Probe using the Depth of Interaction Measurement (실리콘 광증폭기와 반응깊이 측정방법을 이용한 수술용 베타 영상/감마 프로브 가능성 연구)

  • Kwak, In-Suk;Kang, Han Gyu;Son, Jeong-Whan;Lee, Jae Sung;Hong, Seong Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Radiopharmaceutical agents for positron emission tomography (PET), such as $^{18}F$-FDG and $^{68}Ga$, have been used not only for whole-body PET imaging but also for intraoperative radionuclide-guided surgery due to their quantitative and sensitive imaging characteristics. Current intraoperative probes detect gamma or beta particles, but not both of them. Gamma probes have low sensitivities since a collimator has to be used to reduce backgrounds. Positron probes have a high tumor-to-background ratio, but they have a 1-2 mm depth limitation from the body surface. Most of current intraoperative probes produce only audible sounds proportional to count rates without providing tumor images. This research aims to detect both positrons and annihilation photons from $^{18}F$ using plastic scintillators and a GAGG scintillation crystal attached to silicon photomultiplier (SiPM). The depth-of-interaction (DOI) along the plastic scintillator can be used to obtain the 2-D images of tumors near the body surface. The front and rear part of the intraoperative probe consists of $4{\times}1$ plastic scintillators ($2.9{\times}2.0{\times}12.0mm^3$) for positron detection and a Ce:GAGG scintillation crystal ($12.0{\times}12.0{\times}9.0mm^3$) for annihilation photon detection, respectively. The DOI resolution of $4.4{\pm}1.6mm$ along the plastic scintillator was obtained by using the 3M enhanced specular reflector (ESR) with rectangular holes between the plastic scintillators, which showed the feasibility of a 2-D image pixel size of $2.9{\times}4.4mm^2$ (X-direction ${\times}$ Y-direction).

New Prefiltering Methods based on a Histogram Matching to Compensate Luminance and Chrominance Mismatch for Multi-view Video (다시점 비디오의 휘도 및 색차 성분 불일치 보상을 위한 히스토그램 매칭 기반의 전처리 기법)

  • Lee, Dong-Seok;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.127-136
    • /
    • 2010
  • In multi-view video, illumination disharmony between neighboring views can occur on account of different location of each camera and imperfect camera calibration, and so on. Such discrepancy can be the cause of the performance decrease of multi-view video coding by mismatch of inter-view prediction which refer to the pictures obtained from the neighboring views at the same time. In this paper, we propose an efficient histogram-based prefiltering algorithm to compensate mismatches between the luminance and chrominance components in multi-view video for improving its coding efficiency. To compensate illumination variation efficiently, all camera frames of a multi-view sequence are adjusted to a predefined reference through the histogram matching. A Cosited filter that is used for chroma subsampling in many video encoding schemes is applied to each color component prior to histogram matching to improve its performance. The histogram matching is carried out in the RGB color space after color space converting from YCbCr color space. The effective color conversion skill that has respect to direction of edge and range of pixel value in an image is employed in the process. Experimental results show that the compression ratio for the proposed algorithm is improved comparing with other methods.

A New Error Concealment Based on Edge Detection (에지검출을 기반으로 한 새로운 에러 은닉 기법)

  • Yang, Yo-Jin;Son, Nam-Rye;Lee, Guee-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.623-629
    • /
    • 2002
  • In transmitting compressed video bit-stream over Internet, packet losses cause error propagations in both spatial and temporal domains, which in turn leads to severe degradation I image quality. In this paper, a new error concealment algorithm, called EBMA(Edge Detection based Boundary Matching Algorithm), is proposed to repair damaged portions of the video frames in the receiver. Conventional BMA(Boundary Matching Algorithm) assumes that the pixels on the boundary of the missing block and its neighboring blocks are very similar, but has no consideration of edges across the boundary. In our approach, the edges are detected across the boundary of the lost or erroneous block. Once the orientation of each edge is found, only the pixel difference along the expected edges across the boundary is measured instead of the calculation of difference along the expected edges across the boundary is measured instead of the calculation of differences between all adjacent pixels on the boundary Therefore, the proposed approach needs very few computations and the experiment shows and improvement of the performance over the conventional BMA in terms of both subjective and objective quality of video sequences.

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using a Partial Histogram Threshold Algorithm (부분 히스토그램 문턱치 알고리즘을 사용한 조영증강 CT영상의 자동 간 분할)

  • Kyung-Sik Seo;Seung-Jin Park;Jong An Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of a pancreas in the abdomen. In this paper, an automatic liver segmentation method using a partial histogram threshold (PHT) algorithm is proposed for overcoming randomness of CE-CT images and removing the pancreas. After histogram transformation, adaptive multi-modal threshold is used to find the range of gray-level values of the liver structure. Also, the PHT algorithm is performed for removing the pancreas. Then, morphological filtering is processed for removing of unnecessary objects and smoothing of the boundary. Four CE-CT slices of eight patients were selected to evaluate the proposed method. As the average of normalized average area of the automatic segmented method II (ASM II) using the PHT and manual segmented method (MSM) are 0.1671 and 0.1711, these two method shows very small differences. Also, the average area error rate between the ASM II and MSM is 6.8339 %. From the results of experiments, the proposed method has similar performance as the MSM by medical Doctor.

Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do - (객체기반 분류기법을 이용한 토지피복 특성분석 - 강원도 인제군의 DMZ지역 일원을 대상으로 -)

  • Na, Hyun-Sup;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2014
  • Object-based classification methods provide a valid alternative to traditional pixel-based methods. This study reports the results of an object-based classification to examine land cover in the demilitarized zones(DMZs) of Inje-gun. We used land cover classes(7 classes for main category and 13 classes for sub-category) selected from the criteria by Korea Ministry of Environment. The average and standard deviation of the spectrum values, and homogeneity of GLCM were chosen to map land cover types in an hierarchical approach using the nearest neighborhood method. We then identified the distributional characteristics of land cover by considering 3 topographic characteristics (altitude, slope gradient, distance from the Southern Limited Line(SLL)) within the DMZs. The results showed that scale 72, shape 0.2, color 0.8, compactness 0.5 and smoothness 0.5 were the optimum weight values while scale, shape and color were most influenced parameters in image segmentation. The forests (92%) were main land cover type in the DMZs; the grassland(5%), the urban area (2%) and the forests (broadleaf forest: 44%, mixed forest: 42%, coniferous forest: 6%) also occupied mostly in land cover classes for sub-category. The results also showed that facilities and roads had higher density within 2 km from the SLL, while paddy, field and bare land were distributed largely outside 6 km from the SLL. In addition, there was apparent distinction in land cover by topographic characteristics. The forest had higher density at above altitude 600m and above slope gradient $30^{\circ}$ while agriculture, bare land and grass land were distributed mainly at below altitude 600m and below slope gradient $30^{\circ}$.

The Use of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC보정을 위한 국가 통합기준점의 활용)

  • Ahn, Kiweon;Lee, Hyoseong;Seo, Doochun;Park, Byung-Wook;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2014
  • High resolution satellite images have to be oriented and geometrically processed from GCPs(Ground Control Points) to generate precise DEMs(Digital Elevation Models) and topographic maps. In Korea, thousands of national UCPS(Unified Control Points) are established and distributed all over the country by the Korean NGII(National Geographic Information Institute). For that reason, UCPs can be easily searched and downloaded by the national-control-point-record-issues system. Following the study, we suggested the sky-view and road-view from web-portals for searching and identifying UCPs on the images. To evaluate the usefulness of UCPs in RPCs(rational polynomial coefficients) adjustment of the high resolution satellite images, the one UCP, which of using simple the control point, has been applied to adjust the vendor-provided RPCs of the KOMPSAT-3 images. As a result, the positioning error of corrected RPCs was approximately one pixel and one meter. From this experiment, we conclude that the UCPs will be able to replace the survey GCPs for mapping with the satellite images or aerial images.

A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm (효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.359-368
    • /
    • 2002
  • In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.

Wavelet based video coding with spatial band coding (대역별 공간 부호화를 이용한 웨이블릿 기반 동영상 부호화)

  • Park, Min-Seon;Park, Sang-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.351-358
    • /
    • 2002
  • Video compression based on DCT (Discrete Cosine Transform) has weakpoints of blocking artifacts and pixel loss when the resolution is changed. DWT (Discrete Wavelet Transform) based method can overcome such problems. In SAMCoW (Scalable Adaptive Motion Compensation Wavelet), one of wavelet based video coding algorithm, both intra frames and motion compensated error frames are encoded using EZW(Embedded Zerotree Wavelet) algorithm. However the property of wavelets transform coefficients of motion compensated error frames are different from that of still images. Signal energy is not highly concentrated in the lower bands which is true for most still image cases. Signal energy is rather evenly distributed over all frequency bands. This paper suggests a new video coding algorithm utilizing these properties. Spatial band coding which is known to be very effective for encoding images with relative1y high frequency components and not utilizing the interband coefficients correlation is applied instead of EZW to encode both intra and inter frames. In spatial band coding, the position and value of significant wavelet coefficients in each band are progressively transmitted. Unlike EZW, inter band coefficients correlations are not utilized in spatial band coding. It has been shown that spatial band coding gives better performance than EZW when applied to wavelet based video compression.

An Iterative Method for Flat-Field Correction of Digital Radiography When Detector is at Any Position (반복적인 방법을 이용한 임의의 DR detector 위치에서의 flat field correction 방법 연구)

  • Kim, Do-Il;Lee, Hyoung-Koo;Kim, Sung-Hyeon;Park, Dae-Sop;Choe, Bo-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.64-66
    • /
    • 2004
  • When examing patients with DRs it is necessary to remove bad pixels and lines and to correct non-uniform offsets and x-ray field. For non-uniformity correction a flat field x-ray image is needed, and to obtain it the center of detector is usually aligned with the focal spot of the x-ray tube, which is conserved when examing patients to preserve the flat field. In some of radiographic techniques, however, it is necessary to move the x-ray tube off the center position of detector or tilt the detector. We investigated the effect of detector tilting on the non-uniformity correction, and propose a method to reduce the effect using a new algorithm. The flat field of X-ray in the DR detector could be guaranteed with this result.

  • PDF