• Title/Summary/Keyword: Image pixel

Search Result 2,495, Processing Time 0.033 seconds

Banding Artifacts Reduction Method in Multitoning Based on Threshold Modulation of MJBNM (MJBNM의 임계값 변조를 이용한 멀티토닝에서의 띠 결점 감소 방법)

  • Park Tae-Yong;Lee Myong-Young;Son Chang-Hwan;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.40-47
    • /
    • 2006
  • This paper proposes a multitoning method using threshold modulation of MJBNM(Modified Jointly Blue Noise Mask) for banding artifacts reduction. As banding artifacts in multitoning appear as uniform dot distributions around the intermediate output levels, such multitone output results in discontinuity and visually unpleasing patterns in smooth transition regions. Therefore, to reduce these banding artifacts, the proposed method rearranges the dot distribution by introducing pixels in the neighborhood of output levels that occurs banding artifacts. First of all principal cause of banding artifacts are analyzed using mathematical description. Based on this analytical result, a threshold modulation technique of MJBNM which takes account of chrominance error and correlation between channels is applied. The original threshold range of MJBNM is first scaled linearly sot that the minimum and maximum of the scaled range include two pixel more than adjacent two output levels that cover an input value. In an input value is inside the vicinity of any intermediate output levels produce banding artifacts, the output is set to one of neighboring output levels based on the pointwise comparison result according to threshold modulation parameter that determines the dot density and distribution. In this case, adjacent pixels are introduced at the position where the scaled threshold values are located between two output levels and the minimum and maximum threshold values. Otherwise, a conventional multitoning method is applied. As a result, the proposed method effectively decreased the appearance of banding artifacts around the intermediate output levels. To evaluate the quality of the multitone result, HVS-WRMSE according to gray level for gray ramp image and S-CIELAB color difference for color ramp image are compared with other methods.

Quantitative Analysis of Artifactual Perfusion Defects due to the Cutoff Frequencies of Reconstruction Filters in Tc-99m-MIBI Myocardial SPECT Images (Tc-99m-MIBI 심근 SPECT에서 재구성필터의 차단주파수에 의한 인위적 관류결손의 정량적 평가)

  • Kwark, Cheol-Eun;Chung, June-Key;Lee, Myung-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.231-238
    • /
    • 1995
  • Tc-99m-MIBI (Sestamibi) myocardial SPECT along with TI-201 tomographic Imaging has demonstrated wide application and high image quality sufficient for the diagnosis of myocardial perfusion defect, which consequently reflects regional myocardial blood flow. The qualitative values of myocardial SPECT with Tc-99m-MIBI as well ds the quantitative cases depend in some degree on the reconstruction techniques of multiple projections. Filtered backprojection (FBP) Is the common standard method for reconstruction rather than the complicated and time-consuming arithmetic methods. In FBP it is known that the distribution of radioactivity in reconstructed transverse slices varies with the selected litter parameters such as cutoff frequencies and order (Butterworth case) The cutoff frequencies used in clinicAl practice partially remove and decrease the true radioactive distribution and alter the pixel counts, which lead to underestimation of true counts in specific myocardial regions. In this study, we have investigated the effect of cutoff frequencies of reconstruction filter on the artifactually induced perfusion defects, which are often demonstrated near inferior and/or inferoseptal cardiac walls due to the intense hepatic uptake of Tc-99m-MIBI. A computerized method for Identifying the relative degree of artifactual perfusion defect and for comparing those degrees along with the relative amount of hepatic uptake to myocardium was developed and patient images were studied to observe the quantitative degree of underestimation of myocardial perfusion, and to propose some reasonable threshold of cutoff frequency in the diagnosis of perfusion defect quantitatively. We concluded that from the quantitative viewpoint cutoff frequencies may be used as high as possible with the sacrifice of homogeneity of image quality, and those frequencies lower than the common 0.3 Wyquist frequency would reveal severe degradation of radioactive distribution near inferior and/or inferoseptal myocardium when applying Butterworth or low pass filter.

  • PDF

Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI (위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용)

  • Jin, Yihua;Zhu, Jingrong;Sung, Sunyong;Lee, Dong Kun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

A comparative study on the accuracy of digital subtraction radiography according to the aquisition methods of reconstructed images (재구성영상 형성방법에 따른 디지털영상공제술의 정확성 비교연구)

  • Huh Young-June;Jeon In-Seong;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;Kim Jong-Dae
    • Imaging Science in Dentistry
    • /
    • v.32 no.2
    • /
    • pp.107-111
    • /
    • 2002
  • Purpose : To compare the accuracy of digital subtraction images acquired by two different methods different in positioning four reference points for geometrical standardization. Materials and Methods : A total of 36 digital radiographic images of 6 volunteers were taken at the areas of the incisor, premolar, and molar of both the maxilla and mandible using the Digora system. Each image was moved 4 mm vertically and horizontally. Four oral and maxillofacial radiologists performed digital subtraction radiography between the paired images before and after movement using Emago (Oral Diagnostic Systems, Amsterdam, The Netherlands) and Sunny (Biomedisys Co., Seoul, Korea). The standard deviation of the internal gray value in Region of Interest (ROI) was statistically analyzed between the two programs using the paired t-test. Results : The standard deviation of pixel gray values from the digital subtraction images using the Sunny program were lower than that of the Emago program (p<0.05). All observers showed significant differences between each other when the Sunny program was used (p<0.05), but one observer showed a significantly higher score than other observers when they used Emago (p<0.05). The standard deviations of premolar area from both Sunny and Emago programs were significantly higher than those of anterior and molar regions (p<0.05). Conclusion: The subtracted images using the Sunny program were more accurate and sensitive than those taken using the Emago program.

  • PDF

Diagnosis of Ictal Hyperperfusion Using Subtraction Image of Ictal and Interictal Brain Perfusion SPECT (발작기와 발작간기 뇌 관류 SPECT 감산영상을 이용한 간질원인 병소 진단)

  • Lee, Dong Soo;Seo, Jong-Mo;Lee, Jae Sung;Lee, Sang-Kun;Kim, Hyun Jip;Chung, June-Key;Lee, Myung Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • A robust algorithm to disclose and display the difference of ictal and interictal perfusion may facilitate the detection of ictal hyperfusion foci. Diagnostic performance of localizing epileptogenic zones with subtracted SPECT images was compared with the visual diagnosis using ictal and interictal SPECT, MR, or PET. Ietal and interictal Tc-99m-HMPAO cerebral perfusion SPECT images of 48 patients(pts) were processed to get parametric subtracted images. Epileptogenic foci of all pts were diagnosed by seizure free state after resection of epileptogenic zones. In subtraction SPECT, we used normalized difference ratio of pixel counts(ictal-interictal)/interictal ${\times}100%$) after correcting coordinates of ictal and interictal SPECT in semi-automatized 3-dimensional fashion. We found epileptogenic zones in subtraction SPECT and compared the performance with visual diagnosis of ictal and interictal SPECT, MR and PET using post-surgical diagnosis as gold standard. The concordance of subtraction SPECT and ictal-interictal SPECT was moderately good(kappa=0.49). The sensitivity of ictal-interictal SPECT was 73% and that of subtraction SPECT 58%. Positive predictive value of ictal-interictal SPECT was 76% and that of subtraction SPECT was 64%. There was no statistical difference between sensitivity or positive predictive values of subtraction SPECT and ictal-interictal SPECT, MR or PET. Such was also the case when we divided patients into temporal lobe epilepsy and neocortical epilepsy. We conclude that subtraction SPECT we produced had equivalent diagnostic performance compared with ictal-interictal SPECT in localizing epileptogenic zones. Additional value of these subtraction SPECT in clinical interpretation of ictal and interictal SPECT should be further evaluated.

  • PDF

Multitoning Method Based on Arrangement of Ink Distribution for Smooth Tone Transition (부드러운 계조 변화를 위한 잉크 분포 조절 기반의 멀티토닝 방법)

  • Park, Tae-Yong;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.17-25
    • /
    • 2007
  • Multilevel inkjet printer employs multiple ink droplets with variable dot size and/or different concentrations intended to preserve high fidelity color reproduction and the appearance of continuous tone. A variety of research efforts on multitoning techniques has progressed toward better image quality. However, banding artifacts appear due to the same dot distributions near the printable output levels. This results in discontinuity and visually unpleasing output, especially at the smooth tone transition region. In this paper, to reduce the banding artifacts, a multitoning method to arrange ink distribution by controlling the blending proportion of adjacent output pixels based on an improved threshold scaling function is proposed. Ink distributions across the banding regions are changed according to two factors of the threshold scaling function because these factors handle the blending point of adjacent output pixel. Therefore, 8 observers, subjectively investigated ink distributions around the printable output levels for a set of the improved threshold scaling function. For a threshold scaling function with the specific factor values, we can achieve smoother visual transition. In the experiment, the proposed method showed a reduction of banding artifacts in both u-ay and color image and represented better Performance of color reproduction.

Reduction of Radiographic Quantum Noise Using Adaptive Weighted Median Filter (적응성 가중메디안 필터를 이용한 방사선 투과영상의 양자 잡음 제거)

  • Lee, Hoo-Min;Nam, Moon-Hyon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.465-473
    • /
    • 2002
  • Images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in radiography is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in reading. We have proposed adaptive weighted median(AWM) filters based on local statistics. We show two ways of realizing the AWM filters. One is a simple type of AWM filter, whose weights are given by a simple non-linear function of three local characteristics. The other is the AWM filter which is constructed by homogeneous factor(HF). Homogeneous factor(HF) from the quantum noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the detection systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by visual C++ language on a IBM-PC Pentium 550 for testing purposes, the effects and results of the noise filtering were proposed by comparing with images of the other existing filtering methods.

Intensity Compensation for Efficient Stereo Image Compression (효율적인 스테레오 영상 압축을 위한 밝기차 보상)

  • Jeon Youngtak;Jeon Byeungwoo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.101-112
    • /
    • 2005
  • As we perceive the world as 3-dimensional through our two eyes, we can extract 3-dimensional information from stereo images obtained from two or more cameras. Since stereo images have a large amount of data, with recent advances in digital video coding technology, efficient compression algorithms have been developed for stereo images. In order to compress stereo images and to obtain 3-D information such as depth, we find disparity vectors by using disparity estimation algorithm generally utilizing pixel differences between stereo pairs. However, it is not unusual to have stereo images having different intensity values for several reasons, such as incorrect control of the iris of each camera, disagreement of the foci of two cameras, orientation, position, and different characteristics of CCD (charge-coupled device) cameras, and so on. The intensity differences of stereo pairs often cause undesirable problems such as incorrect disparity vectors and consequent low coding efficiency. By compensating intensity differences between left and right images, we can obtain higher coding efficiency and hopefully reduce the perceptual burden of brain to combine different information incoming from two eyes. We propose several methods of intensity compensation such as local intensity compensation, global intensity compensation, and hierarchical intensity compensation as very simple and efficient preprocessing tool. Experimental results show that the proposed algerian provides significant improvement in coding efficiency.

A Study on Treatment Target Position Verification by using Electronic Portal Imaging Device & Fractionated Stereotatic Radiotherapy (EPID와 FSRT를 이용한 치료표적위치 검증에 관한 연구)

  • Lee, Dong-Hoon;Kwon, Jang-Woo;Park, Seung-Woo;Kim, Yoon-Jong;Lee, Dong-Han;Ji, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.44-51
    • /
    • 2009
  • It is very important to verify generated setup errors in cancer therapy by using a high energy radiation and to perform the precise radiation therapy. Specially, the verification of treatment position is very crucial in special therapies like fractionated stereotatic radiotherapy (FSRT). The FSRT uses normally high-dose, small field size for treating small intracranial lesions. To estimate the developed FSRT system, the isocenter accuracy of gantry, couch and collimator were performed and a total of inaccuracy was less than ${\pm}1mm$. Precise beam targeting is crucial when using high-dose, small field size FSRT for treating small intracranial lesions. The EPID image of the 3mm lead ball mounted on the isocenter with a 25mm collimator cone was acquired and detected to the extent of one pixel (0.76mm) after comparing the difference between the center of a 25mm collimator cone and a 3 mm ball after processing the EPID image. In this paper, the radiation treatment efficiency can be improved by performing precise radiation therapy with a developed video based EPID and FSRT at near real time