• Title/Summary/Keyword: Image pixel

Search Result 2,495, Processing Time 0.028 seconds

Moving Object Detection using Gaussian Pyramid based Subtraction Images in Road Video Sequences (가우시안 피라미드 기반 차영상을 이용한 도로영상에서의 이동물체검출)

  • Kim, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5856-5864
    • /
    • 2011
  • In this paper, we propose a moving object detection method in road video sequences acquired from a stationary camera. Our proposed method is based on the background subtraction method using Gaussian pyramids in both the background images and input video frames. It is more effective than pixel based subtraction approaches to reduce false detections which come from the mis-registration between current frames and the background image. And to determine a threshold value automatically in subtracted images, we calculate the threshold value using Otsu's method in each frame and then apply a scalar Kalman filtering to the threshold value. Experimental results show that the proposed method effectively detects moving objects in road video images.

Development of A Vision-based Lane Detection System with Considering Sensor Configuration Aspect (센서 구성을 고려한 비전 기반 차선 감지 시스템 개발)

  • Park Jaehak;Hong Daegun;Huh Kunsoo;Park Jahnghyon;Cho Dongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.97-104
    • /
    • 2005
  • Vision-based lane sensing systems require accurate and robust sensing performance in lane detection. Besides, there exists trade-off between the computational burden and processor cost, which should be considered for implementing the systems in passenger cars. In this paper, a stereo vision-based lane detection system is developed with considering sensor configuration aspects. An inverse perspective mapping method is formulated based on the relative correspondence between the left and right cameras so that the 3-dimensional road geometry can be reconstructed in a robust manner. A new monitoring model for estimating the road geometry parameters is constructed to reduce the number of the measured signals. The selection of the sensor configuration and specifications is investigated by utilizing the characteristics of standard highways. Based on the sensor configurations, it is shown that appropriate sensing region on the camera image coordinate can be determined. The proposed system is implemented on a passenger car and verified experimentally.

Implementation of a Robust Visual Surveillance Algorithm under outdoor environment (옥외 환경에강인한 영상 감시알고리듬구현)

  • Jung, Yong-Bae;Kim, Tea-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • This paper describes a robust visual surveillance algorithm under outdoor environment. One of the difficult problems for outdoor is to obtain effective updating process of background images. Because background images generally contain the shadows of buildings, trees, moving clouds and other objects, they are changed by lapse of time and variation of illumination. They provide the lowering of performance for surveillance system under outdoor. In this paper, a robust algorithm for visual surveillance system under outdoor is proposed, which apply the mixture Gaussian filter and color invariant property on pixel level to update background images. In results, it was showed that the moving objects can be detected on various shadows under outdoor.

  • PDF

Development of a Vehicle Tracking Algorithm using Automatic Detection Line Calculation (검지라인 자동계산을 이용한 차량추적 알고리즘 개발)

  • Oh, Ju-Taek;Min, Joon-Young;Hur, Byung-Do;Kim, Myung-Seob
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.265-273
    • /
    • 2008
  • Video Image Processing (VIP) for traffic surveillance has been used not only to gather traffic information, but also to detect traffic conflicts and incident conditions. This paper presents a system development of gathering traffic information and conflict detection based on automatic calculation of pixel length within the detection zone on a Video Detection System (VDS). This algorithm improves the accuracy of traffic information using the automatic detailed line segmentsin the detection zone. This system also can be applied for all types of intersections. The experiments have been conducted with CCTV images, installed at a Bundang intersection, and verified through comparison with a commercial VDS product.

Design of spectrally encoded real-time slit confocal microscopy (파장 코딩된 실시간 슬릿 공초점 현미경의 설계)

  • Kim Jeong-Min;Kang Dong-Kyun;Gweon Dae-Gab
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.576-580
    • /
    • 2005
  • New real-time confocal microscopy using spectral encoding technique and slit confocal aperture is proposed and designed. Spectral encoding technique, which encodes one-dimensional spatial information of a specimen in wavelength, and slit aperture make it possible to obtain two-dimensional lateral image of the specimen simultaneously at standard video rates without expensive scanning units such as polygon mirrors and galvano mirrors. The working principle and the configuration of the system are explained. The variation in axial responses for the simplified model of the system with normalized slit width is numerically analyzed based on the wave optics theory. Slit width that directly affects the depth discrimination of the system is determined by a compromise between axial resolution and signal intensity from the simulation result. On the assumption of the lateral sampling resolution of 50 nm, design variables and governing equations of the system are derived. The system is designed to have the mapping error less than the half pixel size, to be diffraction-limited and to have the maximum illumination efficiency. The designed system has the FOV of $12.8um{\times}9.6um$, the theoretical axial FWHM of 1.1 um and the lateral magnification of-367.8.

  • PDF

Hair thickness measuring scheme based on portable camera image (포터블 카메라 영상 기반 모발 두께 측정 기법)

  • Kim, Hyungjun;Kim, Woogeol;Rew, Jehyeok;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1420-1423
    • /
    • 2015
  • 기존의 영상처리 및 컴퓨터 비전 기술은 X-ray, 군사용 사진, CCTV 영상과 같은 제한적인 상황에서 주로 사용되었다. 스마트폰이 보급되면서 고해상도의 사진을 어디서든 촬영할 수 있게 되었고, 고성능 디바이스를 이용하여 촬영된 영상을 즉시 가공 및 처리가 가능하게 되었다. 그 결과 영상처리 기술이 이전보다 다양하고 좀 더 일반적인 분야에서도 쓰이게 되었다. 그러나 영상처리 기술은 조건이 제한될수록 처리가 용이하며, 일반적인 이미지들을 처리하기 위해서는 고려해야 할 사항이 많다. 특히 두피 영상 분석의 경우 머리카락이 겹치는 부분이나 그림자, 머리카락이 밀집하여 상대적으로 어두워지는 부분 등을 고려해야 하는 어려움이 있으며 현재까지 영상처리를 이용한 두피영상 분석에 대한 연구는 많지 않은 것이 현실이다. 본 논문에서는 스마트폰에 부착하는 포터블 카메라로 촬영된 두피영상을 분석하여 모발의 두께를 측정하는 기법을 제시한다. 먼저 영상에 대한 전처리로 Contrast stretching과 이 진화 과정을 수행한다. 얻어진 이진화 영상에 대해 머리카락의 Skeleton을 추출하고 각 pixel의 각도(angle)를 이용하여 법선을 구한다. 계산된 법선과 머리카락 사이의 교점을 구한 후 두 점사이의 거리를 통해 모발의 두께를 계산한다. 계산된 두께와 현미경을 이용하여 측정한 모발의 실제 두께와 비교하여 제안된 기법의 정확도를 평가한다.

Two-sample Linear Rank Tests for Efficient Edge Detection in Noisy Images (잡음영상에서 효과적인 에지검출을 위한 이표본 선형 순위 검정법)

  • Lim Dong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.9-15
    • /
    • 2006
  • In this paper we propose Wilcoxon test, Median test and Van der Waerden test such as linear rank tests in two-sample location problem for detecting edges effectively in noisy images. These methods are based on detecting image intensity changes between two pixel neighborhoods using an edge-height model to perform effectively on noisy images. The neighborhood size used here is small and its shape is varied adaptively according to edge orientations. We compare and analysis the performance of these statistical edge detectors on both natural images and synthetic images with and without noise.

  • PDF

Optical-fiber Electronic Speckle Pattern Interferometry for Quantitative Measurement of Defects on Aluminum Liners in Composite Pressure Vessels

  • Kim, Seong Jong;Kang, Young June;Choi, Nak-Jung
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • Optical-fiber electronic speckle pattern interferometry (ESPI) is a non-contact, non-destructive examination technique with the advantages of rapid measurement, high accuracy, and full-field measurement. The optical-fiber ESPI system used in this study was compact and portable with the advantages of easy set-up and signal acquisition. By suitably configuring the optical-fiber ESPI system, producing an image signal in a charge-coupled device camera, and periodically modulating beam phases, we obtained phase information from the speckle pattern using a four-step phase shifting algorithm. Moreover, we compared the actual defect size with that of interference fringes which appeared on a screen after calculating the pixel value according to the distance between the object and the CCD camera. Conventional methods of measuring defects are time-consuming and resource-intensive because the estimated values are relative. However, our simple method could quantitatively estimate the defect length by carrying out numerical analysis for obtaining values on the X-axis in a line profile. The results showed reliable values for average error rates and a decrease in the error rate with increasing defect length or pressure.

Optical Design of a Reflecting Telescope for CubeSat

  • Jin, Ho;Lim, Juhee;Kim, Youngju;Kim, Sanghyuk
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.533-537
    • /
    • 2013
  • Space telescope optics is one of the major parts of any space mission used to observe astronomical targets or the Earth. This kind of space mission typically involves bulky and complex opto-mechanics with a long optical tube, but attempts have been made to observe a target with a small satellite. In this paper, we describe the optical design of a reflecting telescope for use in a CubeSat mission. For this design we adopt the off-axis segmented method for astronomical observation techniques based on a Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and the secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can yield a 0.383 degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation.

Common Optical System for the Fusion of Three-dimensional Images and Infrared Images

  • Kim, Duck-Lae;Jung, Bo Hee;Kong, Hyun-Bae;Ok, Chang-Min;Lee, Seung-Tae
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • We describe a common optical system that merges a LADAR system, which generates a point cloud, and a more traditional imaging system operating in the LWIR, which generates image data. The optimum diameter of the entrance pupil was determined by analysis of detection ranges of the LADAR sensor, and the result was applied to design a common optical system using LADAR sensors and LWIR sensors; the performance of these sensors was then evaluated. The minimum detectable signal of the $128{\times}128-pixel$ LADAR detector was calculated as 20.5 nW. The detection range of the LADAR optical system was calculated to be 1,000 m, and according to the results, the optimum diameter of the entrance pupil was determined to be 15.7 cm. The modulation transfer function (MTF) in relation to the diffraction limit of the designed common optical system was analyzed and, according to the results, the MTF of the LADAR optical system was 98.8% at the spatial frequency of 5 cycles per millimeter, while that of the LWIR optical system was 92.4% at the spatial frequency of 29 cycles per millimeter. The detection, recognition, and identification distances of the LWIR optical system were determined to be 5.12, 2.82, and 1.96 km, respectively.