• Title/Summary/Keyword: Image pixel

Search Result 2,510, Processing Time 0.031 seconds

Line-of-Sight (LOS) Vector Adjustment Model for Restitution of SPOT 4 Imagery (SPOT 4 영상의 기하보정을 위한 시선 벡터 조정 모델)

  • Jung, Hyung-Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • In this paper, a new approach has been studied correcting the geometric distortion of SPOT 4 imagery. Two new equations were induced by the relationship between satellite and the Earth in the space. line-of-sight (LOS) vector adjustment model for SPOT 4 imagery was implemented in this study. This model is to adjust LOS vector under the assumption that the orbital information of satellite provided by receiving station is uncertain and this uncertainty makes a constant error over the image. This model is verified using SPOT 4 satellite image with high look angle and thirty five ground points, which include 10 GCPs(Ground Control Points) and 25 check points, measured by the GPS. In total thirty five points, the geometry of satellite image calculated by given satellite information(such as satellite position, velocity, attitude and look angles, etc) from SPOT 4 satellite image was distorted with a constant error. Through out the study, it was confirmed that the LOS vector adjustment model was able to be applied to SPOT4 satellite image. Using this model, RMSEs (Root Mean Square Errors) of twenty five check points taken by increasing the number of GCPs from two to ten were less than one pixel. As a result, LOS vector adjustment model could efficiently correct the geometry of SPOT4 images with only two GCPs. This method also is expected to get good results for the different satellite images that are similar to the geometry of SPOT images.

A Study on the Dynamic Range Expansion of the Shack-Hartmann Wavefront Sensor using Image Processing (영상처리 기법을 이용한 샥-하트만 파면 센서의 측정범위 확장에 대한 연구)

  • Kim, Min-Seok;Kim, Ji-Yeon;Uhm, Tae-Kyung;Youn, Sung-Kie;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.375-382
    • /
    • 2007
  • The Shack-Hartmann wavefront sensor is composed of a lenslet array generating the spot images from which local slope is calculated and overall wavefront is measured. Generally the principle of wavefront reconstruction is that the spot centroid of each lenslet array is calculated from pixel intensity values in its subaperture, and then overall wavefront is reconstructed by the local slope of the wavefront obtained by deviations from reference positions. Hence the spot image of each lenslet array has to remain in its subaperture for exact measurement of the wavefront. However the spot of each lenslet array deviates from its subaperture area when a wavefront with large local slopes enters the Shack-Hartmann sensor. In this research, we propose a spot image searching method that finds the area of each measured spot image flexibly and determines the centroid of each spot in its area Also the algorithms that match these centroids to their reference points unequivocally, even if some of them are situated off the allocated subaperture, are proposed. Finally we verify the proposed algorithm with the test of a defocus measurement through experimental setup for the Shack-Hartmann wavefront sensor. It has been shown that the proposed algorithm can expand the dynamic range without additional devices.

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

Accelerated Convolution Image Processing by Using Look-Up Table and Overlap Region Buffering Method (Loop-Up Table과 필터 중첩영역 버퍼링 기법을 이용한 컨벌루션 영상처리 고속화)

  • Kim, Hyun-Woo;Kim, Min-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.17-22
    • /
    • 2012
  • Convolution filtering methods have been widely applied to various digital signal processing fields for image blurring, sharpening, edge detection, and noise reduction, etc. According to their application purpose, the filter mask size or shape and the mask value are selected in advance, and the designed filter is applied to input image for the convolution processing. In this paper, we proposed an image processing acceleration method for the convolution processing by using two-dimensional Look-up table (LUT) and overlap-region buffering technique. First, based on the fixed convolution mask value, the multiplication operation between 8 or 10 bit pixel values of the input image and the filter mask values is performed a priori, and the results memorized in LUT are referred during the convolution process. Second, based on symmetric structural characteristics of the convolution filters, inherent duplicated operation region is analysed, and the saved operation results in one step before in the predefined memory buffer is recalled and reused in current operation step. Through this buffering, unnecessary repeated filter operation on the same regions is minimized in sequential manner. As the proposed algorithms minimize the computational amount needed for the convolution operation, they work well under the operation environments utilizing embedded systems with limited computational resources or the environments of utilizing general personnel computers. A series of experiments under various situations verifies the effectiveness and usefulness of the proposed methods.

Advanced Neighbor Embedding based on Support Vector Regression (SVR에 기반한 개선된 네이버 임베딩)

  • Eum, Kyoung-Bae;Jeon, Chang-Woo;Choi, Young-Hee;Nam, Seung-Tae;Lee, Jong-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.733-735
    • /
    • 2014
  • Example based Super Resolution(SR) is using the correspondence between the low and high resolution image from a database. This method uses only one image to estimate a high resolution image and can get the larger image than 2 times. Example based SR is proposed to solve the problem of classical SR. Neighbor embedding(NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the poor generalization of NE decreases the performance of such algorithm. The sizes of local training sets are always too small to improve the performance of NE. We propose the advanced NE baesd on SVR having an excellent generalization ability to solve this problem. Given a low resolution image, we estimate a pixel in its high resolution version by using SVR based NE. Through experimental results, we quantitatively and qualitatively confirm the improved results of the proposed algorithm when comparing with conventional interpolation methods and NE.

  • PDF

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

Hyperspectral Image Analysis Technology Based on Machine Learning for Marine Object Detection (해상 객체 탐지를 위한 머신러닝 기반의 초분광 영상 분석 기술)

  • Sangwoo Oh;Dongmin Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1120-1128
    • /
    • 2022
  • In the event of a marine accident, the longer the exposure time to the sea increases, the faster the chance of survival decreases. However, because the search area of the sea is extremely wide compared to that of land, marine object detection technology based on the sensor mounted on a satellite or an aircraft must be applied rather than ship for an efficient search. The purpose of this study was to rapidly detect an object in the ocean using a hyperspectral image sensor mounted on an aircraft. The image captured by this sensor has a spatial resolution of 8,241 × 1,024, and is a large-capacity data comprising 127 spectra and a resolution of 0.7 m per pixel. In this study, a marine object detection model was developed that combines a seawater identification algorithm using DBSCAN and a density-based land removal algorithm to rapidly analyze large data. When the developed detection model was applied to the hyperspectral image, the performance of analyzing a sea area of about 5 km2 within 100 s was confirmed. In addition, to evaluate the detection accuracy of the developed model, hyperspectral images of the Mokpo, Gunsan, and Yeosu regions were taken using an aircraft. As a result, ships in the experimental image could be detected with an accuracy of 90 %. The technology developed in this study is expected to be utilized as important information to support the search and rescue activities of small ships and human life.

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection (사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록')

  • Kim, Jong Hong;Heo, Joon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.687-693
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea. showed: (1) average RMSE error of the approach was 0.435 pixel; (2) the average number of matching points was over 25,573; (3) the average processing time was 4.2 min per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.