• Title/Summary/Keyword: Image pixel

Search Result 2,503, Processing Time 0.037 seconds

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).

Numerical Modeling and Experiment for Single Grid-Based Phase-Contrast X-Ray Imaging

  • Lim, Hyunwoo;Lee, Hunwoo;Cho, Hyosung;Seo, Changwoo;Lee, Sooyeul;Chae, Byunggyu
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.83-91
    • /
    • 2017
  • In this work, we investigated the recently proposed phase-contrast x-ray imaging (PCXI) technique, the so-called single grid-based PCXI, which has great simplicity and minimal requirements on the setup alignment. It allows for imaging of smaller features and variations in the examined sample than conventional attenuation-based x-ray imaging with lower x-ray dose. We performed a systematic simulation using a simulation platform developed by us to investigate the image characteristics. We also performed a preliminary PCXI experiment using an established a table-top setup to demonstrate the performance of the simulation platform. The system consists of an x-ray tube ($50kV_p$, 5 mAs), a focused-linear grid (200-lines/inch), and a flat-panel detector ($48-{\mu}m$ pixel size). According to our results, the simulated contrast of phase images was much enhanced, compared to that of the absorption images. The scattering length scale estimated for a given simulation condition was about 117 nm. It was very similar, at least qualitatively, to the experimental contrast, which demonstrates the performance of the simulation platform. We also found that the level of the phase gradient of oriented structures strongly depended on the orientation of the structure relative to that of linear grids.

Parameter Estimation for Range Finding Algorithm of Equidistance Stereo Catadioptric Mirrors (등거리 스테레오 전방위 렌즈의 위치 측정 알고리듬을 위한 파라미터 측정에 관한 연구)

  • Choi, Young-Ho;Kang, Min-Goo;Zo, Moon-Shin
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.117-123
    • /
    • 2007
  • Catadioptric mirrors are widely used in automatic surveillance system. The major drawback of catadioptric mirror is its unequal image resolution. Equidistance catadioptric mirrir can be the solution to this problem. The exact axial alignment and the exact mount of mirror are the sources that can be avoided but the focal length variation is inevitable. In this paper, the effects of focal length variation on the computation of depth and height of object' point are explained and the effective and simple focal length finding algorithm is presented. First two object's points are selected, and the counterparts on the other stereo image are to be found using MSE criterion. Using four pixel distance from the image center, the assumed focal length is calculated. If the obtained focal length is different from the exact focal length, 24mm, the focal length value is modified by the proposed method. The method is very simple and gives the comparable results with the earlier sophisticated method.

  • PDF

The Research for the Wide-Angle Lens Distortion Correction by Photogrammetry Techniques (사진측량 기법을 사용한 광각렌즈 왜곡보정에 관한 연구)

  • Kang, Jin-A;Park, Jae-Min;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • General lens, widely using in Photogrammetry, has narrow view, and have to adjust "Image-Registration Method" after obtain images and it need cost; economic, period of time. Recent days, there is various study that use wide-angle lens, usually for robotics field, put to practical use in photogrammetry instead of general lens. In this studies, distortion tendency of wide-angle lens and utilize the correction techniques suitable to wide-angle lens by the existing photographic survey methods. After carrying out the calibration of the wide-angle lens, we calculated the correction parameters, and then developed the method that convert the original image-point to new image-point correcting distortion. For authorization the developed algorithm, we had inspection about shape and position; there are approximately 2D RMSE of 3 pixel, cx = 2, and cy = 3 different.

Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware (악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발)

  • Park, Jihyeon;Kim, Taeok;Shin, Yulim;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

A Study on Noise Removal using Modified Edge Detection in AWGN Environments (AWGN 환경에서 변형된 에지 검출을 이용한 잡음 제거에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1342-1348
    • /
    • 2017
  • In an era where digital data takes on great importance, images are essential to various media. Noise is generated during the acquisition and transmission of such images, caused by a number of external factors. The removal of noise is an essential step in image processing. There are various methods used to remove noise, in accordance with the cause or form of the noise. AWGN is one of the leading methods. As such, this paper applies the edge detection method using the mean of each pixel after categorizing in detail the partial masks into nine areas as part of the preliminary process, in order to minimize noise that had been added to the image. In addition, the paper suggests an algorithm that applies different filters to the partial masks by using the critical mass value of the transfigured edge detection. To verify the competence of the suggested algorithm, it was compared with existing methods by using magnified images and PSNR(peak signal to noise ratio).

High Density Salt & Pepper Noise Reduction using Lagrange Interpolation and Iteration Process (Lagrange 보간 및 반복 처리를 이용한 고밀도 Salt & Pepper 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.965-972
    • /
    • 2015
  • Along with the rapid development in digital times, image media are being used in internet, computer and digital camera. But image deterioration occurs due to various exterior reasons in the procedures of acquisition, processing, transmission and recording of digital image and major reason is noise. Therefore in order to remove salt & pepper noise, this study suggested the algorithm which replaces the noise to original pixel in case of non-noise, and processes the noise with Lagrange interpolation method in case of noise. In case high density noise was added and the noise could not be removed, noise characteristics were improved by processing the noises repeatedly. And for objective judgment, this method was compared with existing methods and PSNR(peak signal to noise ratio) was used as judgment standard.

Illumination Robust Feature Descriptor Based on Exact Order (조명 변화에 강인한 엄격한 순차 기반의 특징점 기술자)

  • Kim, Bongjoe;Sohn, Kwanghoon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.77-87
    • /
    • 2013
  • In this paper, we present a novel method for local image descriptor called exact order based descriptor (EOD) which is robust to illumination changes and Gaussian noise. Exact orders of image patch is induced by changing discrete intensity value into k-dimensional continuous vector to resolve the ambiguity of ordering for same intensity pixel value. EOD is generated from overall distribution of exact orders in the patch. The proposed local descriptor is compared with several state-of-the-art descriptors over a number of images. Experimental results show that the proposed method outperforms many state-of-the-art descriptors in the presence of illumination changes, blur and viewpoint change. Also, the proposed method can be used for many computer vision applications such as face recognition, texture recognition and image analysis.

3D volumetric medical image coding using unbalanced tree structure (불균형 트리 구조를 이용한 3차원 의료 영상 압축)

  • Kim Young-Seop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.567-574
    • /
    • 2006
  • This paper focuses on lossy medical image compression methods for medical images that operate on three-dimensional(3-D) irreversible integer wavelet transform. We offer an application of unbalanced tree structure algorithm to medical images, using a 3-D unbalanced wavelet decomposition and a 3-D unbalanced spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method. We have tested our encoder on volumetric medical images using different integer filters and 16 coding unit size. The coding unit sizes of 16 slices save considerable dynamic memory(RAM) and coding delay from full sequence coding units used in previous works. If we allow the formation of trees of different lengths, then we can accomodate more transaxial scales than three. Then the encoder and decoder can then keep track of the length of the tree in which each pixel resides through the sequence of decompositions. Results show that, even with these small coding units, our algorithm with I(5,3)filter performs as well and better in lossy coding than previous coding systems using 3-D integer unbalanced wavelet transforms on volumetric medical images.

  • PDF

Epipolar Resampling from Kompsat-2 and Kompsat-3 (아리랑 위성 2호와 3호를 이용한 이종 영상 간 에피폴라 영상 생성)

  • Song, Jeong-Heon;Oh, Jae-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.156-166
    • /
    • 2014
  • As of 2014, KARI (Korea Aerospace Research Institute) operates two high-resolution satellites such as Kompsat-2 and Kompsat-3. Kompsat-3 has capability of in-track stereo images acquisition but it is quite limited because the stereo mode lowers the spatial coverage in a trajectory. In this paper we analyze the epipolar geometry from the heterogeneous Kompsat-2 and Kompsat-3 image combination to epipolar resample them for 3D spatial data acquisition. The analysis was carried out using the piecewise approach with RPCs (Rational Polynomial Coefficients) and the result showed the parabolic epipolar curve pattern. We also concluded that the third order polynomial transformation is required for epipolar image resampling. The resampled image pair showed 1 pixel level of y-parallax and can be used for 3D display and digitizing.