• Title/Summary/Keyword: Image matching point

Search Result 352, Processing Time 0.031 seconds

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

An Improvement of Area-Based Matching Algorithm Using Rdge Geatures (에지 특성을 이용한 영역기반 정합의 개선)

  • 이동원;한지훈;박찬웅;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.859-863
    • /
    • 1993
  • There are two methods to get 3-dimensional information by matching image pair feature-based matching and area-based matching. One of the problems in the area-based matching is how the optimal search region which gives accurate correlation between given point and its neighbors can be selected. In this paper, we proposed a new area-based matching algorithm which uses edge-features used in the conventional feature-based matching. It first selects matching candidates by feature-based and matches image pair with area-based method by taking these candidates as guidance to decision of search area. The results show that running time is reduced by optimizing search area(considering edge points and continuity of disparity), keeping on the precision as the conventional area-based matching method.

  • PDF

Fusion Matching According to Land Cover Property of High Resolution Images (고해상도 위성영상의 토지피복 특성에 따른 혼합정합)

  • Lee, Hyoseong;Park, Byunguk;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.583-590
    • /
    • 2012
  • This study proposes fusion image matching method according to land cover property to generate a detailed DEM using the high resolution IKONOS-2 stereo pair. A classified image, consists of building, crop-land, forest, road and shadow-water, is produced by color image with four bands. Edges and points are also extracted from panchromatic image. Matching is performed by the cross-correlation computing after five classes are automatically selected in a reference image. In each of building class, crop-land class, forest class and road class, matching was performed by the grid and edge, only grid, only grid, grid and point, respectively. Shadow-water class was excepted in the matching because this area causes excessive error of the DEM. As the results, edge line, building and residential area could be expressed more dense than DEM by the conventional method.

Improved Image Matching Method Based on Affine Transformation Using Nadir and Oblique-Looking Drone Imagery

  • Jang, Hyo Seon;Kim, Sang Kyun;Lee, Ji Sang;Yoo, Su Hong;Hong, Seung Hwan;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2020
  • Drone has been widely used for many applications ranging from amateur and leisure to professionals to get fast and accurate 3-D information of the surface of the interest. Most of commercial softwares developed for this purpose are performing automatic matching based on SIFT (Scale Invariant Feature Transform) or SURF (Speeded-Up Robust Features) using nadir-looking stereo image sets. Since, there are some situations where not only nadir and nadir-looking matching, but also nadir and oblique-looking matching is needed, the existing software for the latter case could not get good results. In this study, a matching experiment was performed to utilize images with differences in geometry. Nadir and oblique-looking images were acquired through drone for a total of 2 times. SIFT, SURF, which are feature point-based, and IMAS (Image Matching by Affine Simulation) matching techniques based on affine transformation were applied. The experiment was classified according to the identity of the geometry, and the presence or absence of a building was considered. Images with the same geometry could be matched through three matching techniques. However, for image sets with different geometry, only the IMAS method was successful with and without building areas. It was found that when performing matching for use of images with different geometry, the affine transformation-based matching technique should be applied.

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.

Stereo matching using the divide-and-conquer method in the disparity space image (시차 공간에서 divide-and-conquer 방법을 이용한 스테레오 정합)

  • 이종민;김대현;윤용인;최종수
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.179-182
    • /
    • 2003
  • This paper proposes a new stereo matching algorithm using both the divide-and-conquer method and the DSI(Disparity Space Image) technique. Firstly, we find salient feature points on the each scanline of the left image and find the corresponding feature point at the right image. Then the problem of a scanline is divided into several subproblems. By this way, matching of the subintervals is implemented by using the DSI technique. The DSI technique for stereo matching process is a very efficient solution to find matches and occlusions simultaneously and it is very speedy. In addition, we apply three occluding patterns to process occluded regions, as a result, we reduce mismatches at the disparity discontinuity.

  • PDF

The matching algorithm with the satellite images using a dynamic triangular image warping method (동적 삼각형 영상 왜곡 보상 방법을 이용한 위성 영상 정합 알고리듬)

  • Jeon, Byung-Min;Lee, Heung-Jae;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2209-2211
    • /
    • 1998
  • This paper presents the matching algorithm with the satellite images using the image warping method. Two stereo images, which are used for the DEM(Digital Elevation Model) extraction, are generally distorted because the images are acquired at different locations and angles. Therefore, the matching Process can't be executed with the original images. To solve this problem, a dynamic triangular image warping method is proposed. At first, the initial matching is executed with seed point, and then, using the matched points from the initial matching, the distorted images is compensated. We experimented this algorithm with the parts of the $6000{\times}6000$ SPOT satellite images. The experiment results show this algorithm is superior to other warping algorithm.

  • PDF

Panoramic Image Stitching using SURF

  • You, Meng;Lim, Jong-Seok;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • This paper proposes a new method to process panoramic image stitching using SURF(Speeded Up Robust Features). Panoramic image stitching is considered a problem of the correspondence matching. In computer vision, it is difficult to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. However, SURF algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform). In this work, we also describe an efficient approach to decreasing computation time through the homography estimation using RANSAC(random sample consensus). RANSAC is a robust estimation procedure that uses a minimal set of randomly sampled correspondences to estimate image transformation parameters. Experimental results show that our method is robust to rotation, zoom, Gaussian noise and illumination change of the input images and computation time is greatly reduced.

Blunder Detection by Matching Strength Measurement in Digital Photogrammetry (수치 사진측량에 있어서 정합 강도 측정에 의한 불량 정합점 제거에 관한 연구)

  • 정명훈;윤홍식;위광재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.191-198
    • /
    • 2000
  • Digital photogrammetry in the implementation of GIS database plays an important role, with the demand for rapid data acquisition and quick updating. Here image matching represents a fundamental task of digital photogrammetry. No image matching algorithm provides a solution as complete as the one given by human vision which is reinforced by knowledge and intelligence capabilities. In this paper, if object space is smooth, we check the global similarity between a possible corresponding point pair and its neighbouring possible corresponding point pairs, detecting blunders; We define matching strength measurement. Besides this, we compute three-dimension coordinates of matching points by bundle adjustment method. Results of the test reveal that the proposed method can eliminate the incorrectly matched pairs efficiently and the accuracy of three-dimension coordinates of matching points come within an allowable error.

  • PDF

A FAST TEMPLATE MATCHING METHOD USING VECTOR SUMMATION OF SUBIMAGE PROJECTION

  • Kim, Whoi-Yul;Park, Yong-Sup
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.171-176
    • /
    • 1999
  • Template matching is one of the most often used techniques for machine vision applications to find a template of size M$\times$M or subimage in a scene image of size N$\times$N. Most template matching methods, however, require pixel operations between the template and the image under analysis resulting in high computational cost of O(M2N2). So in this thesis, we present a two stage template matching method. In the first stage, we use a novel low cost feature whose complexity is approaching O(N2) to select matching candidates. In the second stage, we use conventional template matching method to find out the exact matching point. We compare the result with other methods in terms of complexity, efficiency and performance. Proposed method was proved to have constant time complexity and to be quite invariant to noise.