• 제목/요약/키워드: Image machine learning

검색결과 595건 처리시간 0.028초

수중 선박엔진 음향 변환을 위한 향상된 CycleGAN 알고리즘 (Improved CycleGAN for underwater ship engine audio translation)

  • 아쉬라프 히나;정윤상;이종현
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.292-302
    • /
    • 2020
  • 기계학습 알고리즘은 소나 및 레이더를 포함한 다양한 분야에서 사용되고 있다. 최근 개발된 GAN(Generative Adversarial Networks)의 변형인 Cycle-Consistency Generative Adversarial Network(CycleGAN)은 쌍을 이루지 않은 이미지-이미지 변환에 대해 검증된 네트워크이다. 본 논문에서는 높은 품질로 수중 선박 엔진음을 변환시킬 수 있는 변형된 CycleGAN을 제안한다. 제안된 네트워크는 수중 음향을 기존영역에서 목표영역으로 변환시키는 생성자 모델과 데이터를 참과 거짓으로 구분하는 개선된 식별자 그리고 변환된 수환 일관성(Cycle Consistency) 손실함수로 구성된다. 제안된 CycleGAN의 정량 및 정성분석은 공개적으로 사용 가능한 수중 데이터 ShipsEar을 사용하여 기존 알고리즘들과 Mel-cepstral분포, 구조적 유사 지수, 최소 거리 비교, 평균 의견 점수를 평가 및 비교함으로써 수행되었고, 분석결과는 제안된 네트워크의 유효성을 입증하였다.

CNN 을 이용한 동전 분류 (Coin Classification using CNN)

  • 이재현;신동규;박이준;송현주;구본근
    • Journal of Platform Technology
    • /
    • 제9권3호
    • /
    • pp.63-69
    • /
    • 2021
  • 각국에서 통용되는 동전 제작에 사용되는 제한된 종류의 재질과 동전의 휴대성 등을 고려한 디자인은 각국의 통화가 달라도 동전의 모양, 크기, 색상을 비슷하게 하였다. 이로 인해 여러 국가를 방문하는 사람은 비슷한 모양의 여러 나라 동전을 식별하는 것에 어려움을 겪는다. 이러한 문제를 해결하기 위해 본 논문에서는 이미지 처리에 효과적인 합성곱 신경망(CNN)을 이용한 동전 분류 방법을 제안한다. 동전 분류를 위한 학습 이미지는 웹 크롤링을 이용하여 수집하고, 이미지 전처리를 위해 OpenCV를 사용하였다. 전처리가 완료된 이미지를 대상으로 특징 추출을 위해 세계층의 합성곱 계층을 사용하였고, 분류를 위해 두 계층의 완전연결 신경망을 사용하였다. 본 논문에서 설계한 모델이 동전 분류에 효과가 있음을 보이기 위해 여덟 종류의 동전을 대상으로 시험하였다. 실험 결과에 의하면 동전 분류의 정확도는 약 99.5%이다.

송아지 질병 결정 지원 모델 (A Calf Disease Decision Support Model)

  • 최동운;강윤정
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1462-1468
    • /
    • 2022
  • 송아지 질병 진단을 위해 사용되는 여러 데이터 중에서 분변은 질병 진단의 중요한 역할을 한다. 송아지 분변 이미지에서 형태, 색상, 질감으로 건강 상태를 알 수 있다. 건강 상태를 파악할 수 있는 분변 이미지는 분변 상태에 따라 정상 송아지 207개와 설사증 송아지 158개의 데이터를 전처리하여 사용하였다. 본 논문에서는 수집된 송아지 데이터 중에서 분변 변수의 이미지를 탐지하고 합성곱 네트워크 기술을 활용하여 질병 증상을 포함하고 있는 데이터 세트에 대해 CNN과 GLCM의 속성을 결합한 GLCM-CNN을 적용하여 이미지를 학습시켰다. CNN의 89.9% 정확도와 GLCM-CNN는 91.7%의 정확도를 보이는 GLCM-CNN는 1.8%의 높은 정확도를 나타내는 유의미한 차이가 있었다.

경량형 임베디드 프로세서를 위한 라이다 거리 기반 클러스터링 기법을 활용한 의미론적 물체 인식 (Semantic Object Detection based on LiDAR Distance-based Clustering Techniques for Lightweight Embedded Processors)

  • 정동규;박대진
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1453-1461
    • /
    • 2022
  • 자율주행차량에서 LiDAR와 같은 3D 데이터 센서를 사용한 주변 물체인식 알고리즘의 정확도는 많은 연구를 통해 상승하고 있으나 그에 따라 높은 성능의 하드웨어와 복잡한 구조를 요구하게 되었다. 이러한 물체인식 알고리즘은 주행 중 많은 프로세서를 수행하고 관리해야 하는 자율주행차량의 메인 프로세서에 큰 부하로 작용한다. 이러한 부하를 감소시킴과 동시에 3D 센서 데이터의 장점을 활용하기 위하여, 3D 센서 데이터에서 물리적 특성을 추출하고 이를 이용하여 생성한 ROI를 이용하여 2D 데이터 기반 인식을 제안한다. 기본 이미지에서 밝기 값을 50% 감소시킨 환경에서 기존 2D 기반 모델 대비 5.3% 높은 정확도와 28.57% 감소한 수행 시간을 보였다. 기본 이미지에서 3D 기반 모델 대비 2.46% 낮은 정확도를 가지는 대신 6.25% 감소한 수행 시간을 가진다.

이미지 추상화 기법을 이용한 반려견 이름 추천 시스템 개발 (Development of Dog Name Recommendation System for the Image Abstraction)

  • 이재헌;정예린;문미경;박승민
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.313-320
    • /
    • 2023
  • 반려견의 등록 누계 현황은 2016년도 107만건에서 2020년 232만건을 기록하고 있다. 매년 동물 등록이 10% 이상씩 증가하고 있고, 이에 따라 반려견을 등록 할 때 이름을 정해야 한다. 반려견 외모의 특징에 맞는 이름을 지어주고 싶지만, 이름을 정하는 것은 많은 어려움이 있다. 본 논문에서는 반려견의 이미지를 인식하고 닮은 사물이나 음식을 기반으로 반려견의 이름을 추천해주는 시스템의 개발 내용을 기술한다. 이 시스템은 다양한 사물과 음식의 이미지를 학습한 모델을 통해 반려견의 이미지와의 유사도를 추출하고, 유사도를 기반으로 강아지의 이름을 추천해준다. 또한 결과값으로 나온 이미지 데이터를 기반으로 연관된 연상단어를 추가로 추천해줌으로써 사용자들에게 다양한 선택지를 제공하고 편의를 높이고 흥미와 재미를 높일 수 있다. 본 시스템을 통해 반려견의 이름을 짓는 고민거리를 해결하고 편하게 반려견에게 어울리는 이름을 확인할 수 있으며, 다양한 추천 이름을 통해 폭넓은 선택지를 줌으로써 사용자들의 만족도를 높일 수 있을 것으로 기대한다.

Computer Vision-Based Measurement Method for Wire Harness Defect Classification

  • Yun Jung Hong;Geon Lee;Jiyoung Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.77-84
    • /
    • 2024
  • 본 논문에서는 컴퓨터 비전을 사용하여 6가지 측정값(눌린 단자의 길이, 단자 끝의 치수(폭), 눌린부분(와이어 부분, 코어 부분)의 폭)을 계산하여 와이어 하네스의 결함을 정확하고 빠르게 탐지할 것을 제안한다. 두 가지 유형의 데이터에서 Harris 코너 검출을 활용하여 물체의 위치를 탐지하고 측정 영역별 특징과 배경과 물체 사이의 음영 차이를 활용하여 각 샘플의 기울기를 반영하는 측정값을 추출하기 위한 기준점을 생성한다. 이후 유클리드 거리 방법과 보정 계수를 사용하여 예측값을 계산하는 방법을 통해 와이어의 위치 변화에 관계 없이 측정값을 예측할 수 있다. 각 측정 유형별로 99.1%, 98.7%, 92.6%, 92.5%, 99.9%, 99.7% 정확도를 달성하였으며, 모든 측정값에서 평균 97%의 정확도로 우수한 결과를 얻었다. 해당 검사 방법은 기존 검사 방법인 육안 검사의 문제점을 보완하고, 작은 양의 데이터만을 이용하여 우수한 결과를 도출 가능하다. 또한 이미지 처리만 이용하기 때문에 딥러닝 방법보다 더 적은 데이터와 비용으로 적용 가능할 것으로 기대된다.

Artificial Intelligence-Based Colorectal Polyp Histology Prediction by Using Narrow-Band Image-Magnifying Colonoscopy

  • Istvan Racz;Andras Horvath;Noemi Kranitz;Gyongyi Kiss;Henriett Regoczi;Zoltan Horvath
    • Clinical Endoscopy
    • /
    • 제55권1호
    • /
    • pp.113-121
    • /
    • 2022
  • Background/Aims: We have been developing artificial intelligence based polyp histology prediction (AIPHP) method to classify Narrow Band Imaging (NBI) magnifying colonoscopy images to predict the hyperplastic or neoplastic histology of polyps. Our aim was to analyze the accuracy of AIPHP and narrow-band imaging international colorectal endoscopic (NICE) classification based histology predictions and also to compare the results of the two methods. Methods: We studied 373 colorectal polyp samples taken by polypectomy from 279 patients. The documented NBI still images were analyzed by the AIPHP method and by the NICE classification parallel. The AIPHP software was created by machine learning method. The software measures five geometrical and color features on the endoscopic image. Results: The accuracy of AIPHP was 86.6% (323/373) in total of polyps. We compared the AIPHP accuracy results for diminutive and non-diminutive polyps (82.1% vs. 92.2%; p=0.0032). The accuracy of the hyperplastic histology prediction was significantly better by NICE compared to AIPHP method both in the diminutive polyps (n=207) (95.2% vs. 82.1%) (p<0.001) and also in all evaluated polyps (n=373) (97.1% vs. 86.6%) (p<0.001) Conclusions: Our artificial intelligence based polyp histology prediction software could predict histology with high accuracy only in the large size polyp subgroup.

영상처리기법을 이용한 CNN 기반 리눅스 악성코드 분류 연구 (A Study on Classification of CNN-based Linux Malware using Image Processing Techniques)

  • 김세진;김도연;이후기;이태진
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.634-642
    • /
    • 2020
  • 사물인터넷(IoT) 기기의 확산으로 인해 다양한 아키텍처가 존재하는 Linux 운영체제의 활용이 증가하였다. 이에 따라 Linux 기반의 IoT 기기에 대한 보안 위협이 증가하고 있으며 기존 악성코드를 기반으로 한 변종 악성코드도 꾸준히 등장하고 있다. 본 논문에서는 시각화한 ELF(Executable and Linkable Format) 파일의 바이너리 데이터를 영상처리 기법 중 LBP(Local Binary Pattern)와 Median Filter를 적용하여 CNN(Convolutional Neural Network)모델로 악성코드를 분류하는 시스템을 제안한다. 실험 결과 원본 이미지의 경우 98.77%의 점수로 가장 높은 정확도와 F1-score를 보였으며 재현율도 98.55%의 가장 높은 점수를 보였다. Median Filter의 경우 99.19%로 가장 높은 정밀도와 0.008%의 가장 낮은 위양성률을 확인하였으며 LBP의 경우 전반적으로 원본과 Median Filter보다 낮은 결과를 보였음을 확인하였다. 원본과 영상처리기법별 분류 결과를 다수결로 분류했을 경우 원본과 Median Filter의 결과보다 정확도, 정밀도, F1-score, 위양성률이 전반적으로 좋아졌음을 확인하였다. 향후 악성코드 패밀리 분류에 활용하거나 다른 영상처리기법을 추가하여 다수결 분류의 정확도를 높이는 연구를 진행할 예정이다.

Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성 (Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks)

  • 김현호;한석민
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.23-31
    • /
    • 2020
  • 본 연구는 철도표면상에 발생하는 노후 현상 중 하나인 결함 검출을 위해 학습데이터를 생성함으로써 결함 검출 모델에서 더 높은 점수를 얻기 위해 진행되었다. 철도표면에서 결함은 선로결속장치 및 선로와 차량의 마찰 등 다양한 원인에 의해 발생하고 선로 파손 등의 사고를 유발할 수 있기 때문에 결함에 대한 철도 유지관리가 필요 하다. 그래서 철도 유지관리의 자동화 및 비용절감을 위해 철도 표면 영상에 영상처리 또는 기계학습을 활용한 결함 검출 및 검사에 대한 다양한 연구가 진행되고 있다. 일반적으로 영상 처리 분석기법 및 기계학습 기술의 성능은 데이터의 수량과 품질에 의존한다. 그렇기 때문에 일부 연구는 일반적이고 다양한 철도표면영상의 데이터베이스를 확보하기위해 등간격으로 선로표면을 촬영하는 장치 또는 탑재된 차량이 필요로 하였다. 본연구는 이러한 기계적인 영상획득 장치의 운용비용을 감소시키고 보완하기 위해 대표적인 영상생성관련 딥러닝 모델인 생성적 적대적 네트워크의 기본 구성에서 여러 관련연구에서 제시된 방법을 응용, 결함이 있는 철도 표면 재생성모델을 구성하여, 전용 데이터베이스가 구축되지 않은 철도 표면 영상에 대해서도 결함 검출을 진행할 수 있도록 하였다. 구성한 모델은 상이한 철도 표면 텍스처들을 반영한 철도 표면 생성을 학습하고 여러 임의의 결함의 위치에 대한 Ground-Truth들을 만족하는 다양한 결함을 재 생성하도록 설계하였다. 재생성된 철도 표면의 영상들을 결함 검출 딥러닝 모델에 학습데이터로 사용한다. 재생성모델의 유효성을 검증하기 위해 철도표면데이터를 3가지의 하위집합으로 군집화 하여 하나의 집합세트를 원본 영상으로 정의하고, 다른 두개의 나머지 하위집합들의 몇가지의 선로표면영상을 텍스처 영상으로 사용하여 새로운 철도 표면 영상을 생성한다. 그리고 결함 검출 모델에서 학습데이터로 생성된 새로운 철도 표면 영상을 사용하였을 때와, 생성된 철도 표면 영상이 없는 원본 영상을 사용하였을 때를 나누어 검증한다. 앞서 분류했던 하위집합들 중에서 원본영상으로 사용된 집합세트를 제외한 두 개의 하위집합들은 각각의 환경에서 학습된 결함 검출 모델에서 검증하여 출력인 픽셀단위 분류지도 영상을 얻는다. 이 픽셀단위 분류지도영상들과 실제 결함의 위치에 대한 원본결함 지도(Ground-Truth)들의 IoU(Intersection over Union) 및 F1-score로 평가하여 성능을 계산하였다. 결과적으로 두개의 하위집합의 텍스처 영상을 이용한 재생성된 학습데이터를 학습한 결함 검출모델의 점수는 원본 영상만을 학습하였을 때의 점수보다 약 IoU 및 F1-score가 10~15% 증가하였다. 이는 전용 학습 데이터가 구축되지 않은 철도표면 영상에 대해서도 기존 데이터를 이용하여 결함 검출이 상당히 가능함을 증명하는 것이다.

머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거 (Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning)

  • 남호수;임보성;권일룡;김지수
    • 지구물리와물리탐사
    • /
    • 제23권3호
    • /
    • pp.168-177
    • /
    • 2020
  • 해저면 탄성파 겹반사는 발파점 모음자료와 겹쌓기 단면에서 모두 일차 반사파의 해석에 잘못된 결과를 초래할 수 있다. 따라서, 해저면 겹반사는 자료처리를 통해 제거해야 한다. 전통적인 자료처리 과정에서 겹반사 제거는 예측오차 곱풀기와 라돈 필터링 등과 같은 모델-기반 기법과 지표관련-겹반사제거와 같은 데이터-기반 기법에 의해 이루어져 왔다. 그러나 대다수의 자료처리 과정들은 방대한 컴퓨터 자원과 전문적인 자료처리 기법뿐만 아니라 자료처리 변수들을 테스트하고 선택하는데 많은 시간을 필요로 한다. 이 논문에서는 머신러닝 시스템을 활용한 해저면 겹반사의 제거효과를 살펴보기 위해 Marmousi2 속도모델에 대한 수치모델링으로 겹반사가 포함된 입력데이터와 겹반사가 포함되지 않은 레이블데이터를 생성하였다. 수직시간차가 보정된 공통중간점 모음자료로 훈련데이터를 구성하였으며 인공신경망은 U-Net 모델을 적용하였다. 해저면 겹반사를 제거하기 위해 훈련된 모델은 레이블데이터에 거의 근접하는 예측 결과를 만들어내며, 현장자료에 대한 예측 테스트에서 해저면 겹반사를 효과적으로 제거하는 것으로 나타났다.