스프레드시트를 활용한 인공신경망 교육을 통해, 비전공자 학부생들은 인공신경망의 동작 원리을 이해하며 자신만의 인공신경망 SW를 개발할 수 있다. 여기서, 인공신경망의 동작 원리 교육은 훈련데이터의 생성과 정답 라벨의 할당부터 시작한다. 이후, 인공 뉴런의 발화 및 활성화 함수, 입력층과 은닉층 그리고 출력층의 매개변수들로부터 계산되는 출력값을 학습한다. 마지막으로, 최초 정의된 각 훈련데이터의 정답 라벨과 인공신경망이 계산한 출력값 간 오차를 계산하는 과정을 학습하고 오차제곱의 총합을 최소화하는 입력층과 은닉층 그리고 출력층의 매개변수들이 계산되는 과정을 학습한다. 스프레드시트를 활용한 인공신경망 동작 원리 교육을 비전공자 학부생 대상으로 실시하였다. 그리고 이미지 훈련데이터와 기초 인공신경망 개발 결과를 수집하였다. 본 논문에서는 12화소 크기의 소용량 이미지로 두 가지 훈련데이터와 해당 인공신경망 SW를 수집한 결과를 분석하고, 수집한 훈련데이터를 Orange 머신러닝 모델 학습 및 분석 도구에 활용하는 방법과 실행 결과를 제시하였다.
최근 딥 러닝을 중심으로 빠르게 발전하고 있는 기계학습 분류 알고리즘은 기존의 방법들보다 뛰어난 성능으로 인하여 주목받고 있다. 딥 러닝 중에서도 Convolutional Neural Network(CNN)는 영상처리에 뛰어나 첨단 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)에서 많이 사용되고 있는 추세이다. 하지만 차량용 임베디드 환경에서 CNN을 소프트웨어로 동작시켰을 때는 각 Layer마다 연산이 반복되는 알고리즘의 특성으로 인해 수행시간이 길어져 실시간 처리가 어렵다. 본 논문에서는 임베디드 환경에서 CNN의 실시간 처리를 위하여 Convolution 연산 및 기타 연산들을 병렬로 처리하여 CNN의 속도를 향상시키는 하드웨어 구조를 제안한다. 제안하는 하드웨어의 성능을 검증하기 위하여 Xilinx ZC706 FPGA 보드를 이용하였다. 입력 영상은 $36{\times}36$ 크기이며, 동작주파수 100MHz에서 하드웨어 수행시간은 약 2.812ms로 실시간 처리가 가능함을 확인했다.
본 연구에서는 무인항공기 원격탐사 기법과 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착폐기물 탐지기법을 제안한다. 항공영상 내에 존재하는 해안표착폐기물을 탐지하기 위해 심층신경망 기반 객체 인식 알고리즘을 제안하였다. PET, 스티로폼, 기타 플라스틱의 3가지 클래스의 이미지 데이터셋으로 심층신경망 모델을 훈련시켰으며, 각 클래스별 탐지 정확도를 Darknet-53과 비교하였다. 이를 통해 해안표착 폐기물을 무인항공기를 통해 성상별 모니터링할 수 있었으며, 향후 본 연구에서 제안하는 방법이 적용될 경우 해변 전체에 대한 성상별 전수조사가 가능하며, 이를 통해 해양환경 감시 분야의 효율성 증대에 기여할 수 있을 것으로 판단된다.
Measuring Intima-media thickness (IMT) with ultrasound images can help early detection of coronary artery disease. As a result, numerous machine learning studies have been conducted to measure IMT. However, most of these studies require several steps of pre-treatment to extract the boundary, and some require manual intervention, so they are not suitable for on-site treatment in urgent situations. in this paper, we propose to use deep learning networks U-Net, Attention U-Net, and Pretrained U-Net to automatically segment the intima-media complex. This study also applied the HE, HS, and CLAHE preprocessing technique to wireless portable ultrasound diagnostic device images. As a result, The average dice coefficient of HE applied Models is 71% and CLAHE applied Models is 70%, while the HS applied Models have improved as 72% dice coefficient. Among them, Pretrained U-Net showed the highest performance with an average of 74%. When comparing this with the mean value of IMT measured by Conventional wired ultrasound equipment, the highest correlation coefficient value was shown in the HS applied pretrained U-Net.
심층 학습 기술의 발전으로 인해 분류, 객체 검출, 분할과 같은 시각 정보를 이용한 심층 학습이 다양한 분야에서 활용되고 있다. 그 중 자율 주행은 시각 데이터를 잘 활용하는 대표적인 분야 중 하나이다. 본 논문에서는 도로 위의 사람과 운송수단 객체에 대한 개별적인 깊이 값을 예측하는 망을 제안한다. 제안하는 모델은 YOLOv3와 Monodepth를 기반으로 하며, 하드 파라미터 쉐어링을 이용한 인코더와 디코더를 통해 객체 검출과 깊이 추정을 동시에 수행한다. 또한 주의 집중 기법을 사용하여 객체 검출 및 깊이 추정의 정확도를 높이고자 하였다. 깊이 추정은 단안 이미지를 통해 이루어지며, 자가 학습 방법을 통해 학습을 수행하였다.
Various approaches have been applied to transform aquaculture from a manual, labour-intensive industry to one dependent on automation technologies in the era of the fourth industrial revolution. Technologies associated with the monitoring of physical condition have successfully been applied in most aquafarm facilities; however, real-time biological monitoring systems that can observe fish condition and behaviour are still required. In this study, we used a video recorder placed on top of a fish tank to observe the swimming patterns of rock bream (Oplegnathus fasciatus), first one fish alone and then a group of five fish. Rock bream in the video samples were successfully identified using the you-only-look-once v3 algorithm, which is based on the Darknet-53 convolutional neural network. In addition to recordings of swimming behaviour under normal conditions, the swimming patterns of fish under abnormal conditions were recorded on adding an anaesthetic or lowering the salinity. The abnormal conditions led to changes in the velocity of movement (3.8 ± 0.6 cm/s) involving an initial rapid increase in speed (up to 16.5 ± 3.0 cm/s, upon 2-phenoxyethanol treatment) before the fish stopped moving, as well as changing from swimming upright to dying lying on their sides. Machine learning was applied to datasets consisting of normal or abnormal behaviour patterns, to evaluate the fish behaviour. The proposed algorithm showed a high accuracy (98.1%) in discriminating normal and abnormal rock bream behaviour. We conclude that artificial intelligence-based detection of abnormal behaviour can be applied to develop an automatic bio-management system for use in the aquaculture industry.
본 연구에서는 색채 계획을 통해 콘텐츠를 제작할 때 참고할 만한 색을 도출하는 방법을 모색하기 위하여 진행되었다. 대상이 된 이미지는 한국 내의 자연풍광을 다룬 사진들로 머신러닝을 활용해 낮과 밤이 어떤 색으로 표현되는지 알아보고, KSCA를 통해 색 빈도를 도출하여 두 결과를 비교, 분석하였다. 낮과 밤 사진의 색을 머신러닝으로 구분한 결과, 51~100%로 구분했을 때, 낮의 색의 영역이 밤의 색보다 2.45배가량 더 많았다. 낮 class의 색은 white를 중심으로, 밤 class의 색은 black을 중심으로 명도에 따라 분포하였다. 낮 class 70%이상의 색이 647, 밤 class 70% 이상의 색이 252, 나머지(31-69%)가 101개로서 중간 영역의 색의 수는 적고 낮과 밤으로 비교적 뚜렷하게 구분되었다. 낮과 밤 class의 색 분포 결과를 통해 명도로 구분되는 두 class의 경계 색채값이 무엇인지 확인할 수 있었다. KSCA를 활용해 디지털 사진의 빈도를 분석한 결과는 전체적으로 밝은 낮 사진에서는 황색, 어두운 밤 사진에서는 청색 위주의 색이 표현되었음을 보여주었다. 낮 사진 빈도에서는 상위 40%에 해당하는 색이 거의 무채색에 가까울 정도로 채도가 낮았다. 또 white & black에 가까운 색이 가장 높은 빈도를 보여 명도차가 크다는 것을 알 수 있었다. 밤 사진의 빈도를 보면 상위 50% 가량 되는 색이 명도 2(먼셀 기호)에 해당하는 어두운 색이다. 그에 비해 빈도 중위권(50~80%)의 명도는 상대적으로 조금 높고(명도 3-4), 하위 20%에서는 여러 색들의 명도차가 크다. 난색들은 빈도 하위 8% 이내에서 간헐적으로 볼 수 있었다. 배색띠를 보았을 때, 전체적으로 남색을 위주로 조화로운 배색을 이루고 있었다. 본 연구의 색의 분포와 빈도의 결과값은 한국 내의 자연 풍경에 관한 디지털 디자인의 색채 계획에 참고 자료로 활용될 수 있을 것이다. 또한 색 분포를 나눈 결과는 해당색이 특정 디자인의 주조색이나 배경색으로 사용될 경우에 두 class 중 어느 쪽에 더 가까운 색인지에 대해 참고사항이 될 수 있을 것이며, 분석 이미지들을 몇 가지 class로 나눈다면, 각 class의 색 분포의 특성에 따라 분석 이미지에 사용되지 않은 색도 어느 class에 얼마큼 더 가까운 이미지인지 도출할 수 있을 것이다.
다양한 스마트 디바이스의 발전에 따라 거리, 공간의 제약 없이 실시간으로 의사소통, 정보공유 등이 가능한 SNS(Social Network Service)를 즐기는 사용자(User)가 증가하고 있다. 의사소통, 관계 형성에 중점을 두었던 SNS 사용자들이 정보공유의 기능으로 SNS를 활용하는 추세이다. 본 논문에서는 사용자의 SNS 게시글을 이용하여 카테고리를 추출하고 정보제공자(Information provider)를 팔로잉 추천해주는 방법을 기술한다. 게시글의 텍스트에서 단어를 분류하고 빈도수를 측정하며, 머신 러닝 기법 중 하나인 CNN(Convolutional Neural Network)을 바탕으로 구축한 Inception-v3 모델을 이용하여 이미지를 단어로 분류한다. 텍스트와 이미지에서 분류한 단어를 DMOZ 기준으로 카테고리 분류하여 정보제공자 DB를 구축한다. 정보제공자 DB의 카테고리와 게시글에서 분류한 사용자의 카테고리를 비교한다. 카테고리가 일치할 경우 카테고리에 분류되어 있는 정보 제공자들를 대상으로 유사도를 측정하여 가장 비슷한 정보제공자의 계정을 추천해주는 방법에 대해 제안한다.
지구관측위성은 다양한 분야에서 활용되고 있으며 높은 활용성과 시장성으로 인해 많은 국가에서 개발 하고 있다. 우리나라는 국가 우주개발 계획에 따라 다양한 지구관측위성을 개발하고 있으며, 그 중에서 다목적 실용위성 시리즈는 가장 대표적인 저궤도 위성이다. 지금까지 총 5기의 다목적실용위성이 발사되어 국가 영상 수요를 충족하고 있으며, 국가기관을 비롯하여 다양한 분야에서 활용되고 있다. 본 특별호에서는 다목적실용 위성 시리즈의 다양한 영상자료를 이용한 자료처리, 분석 및 활용과 관련된 연구에 대해서 소개하고자 한다. 한편 후속 다목적실용위성 영상자료의 차질 없는 활용을 위해서는 고해상도 영상에 적합한 자료처리 및 활용 연구가 계속되어야 하며, 특별호를 통해서 관련 연구 내용이 지속적으로 공유될 수 있도록 할 예정이다.
본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.