• Title/Summary/Keyword: Image hiding

Search Result 223, Processing Time 0.031 seconds

Information Hiding Method based on Interpolation using Max Difference of RGB Pixel for Color Images (컬러 영상의 RGB 화소 최대차분 기반 보간법을 이용한 정보은닉 기법)

  • Lee, Joon-Ho;Kim, Pyung-Han;Jung, Ki-Hyun;Yoo, Kee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.629-639
    • /
    • 2017
  • Interpolation based information hiding methods are widely used to get information security. Conventional interpolation methods use the neighboring pixel value and simple calculation like average to embed secret bit stream into the image. But these information hiding methods are not appropriate to color images like military images because the characteristics of military images are not considered and these methods are restricted in grayscale images. In this paper, the new information hiding method based on interpolation using RGB pixel values of color image is proposed and the effectiveness is analyzed through experiments.

A Generalized Image Interpolation-based Reversible Data Hiding Scheme with High Embedding Capacity and Image Quality

  • Tsai, Yuan-Yu;Chen, Jian-Ting;Kuo, Yin-Chi;Chan, Chi-Shiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3286-3301
    • /
    • 2014
  • Jung and Yoo proposed the first image interpolation-based reversible data hiding algorithm. Although their algorithm achieved superior interpolation results, the embedding capacity was insufficient. Lee and Huang proposed an improved algorithm to enhance the embedding capacity and the interpolation results. However, these algorithms present limitations to magnify the original image to any resolution and pixels in the boundary region of the magnified image are poorly manipulated. Furthermore, the capacity and the image quality can be improved further. This study modifies the pixel mapping scheme and adopts a bilinear interpolation to solve boundary artifacts. The modified reference pixel determination and an optimal pixel adjustment process can effectively enhance the embedding capacity and the image quality. The experimental results show our proposed algorithm achieves a higher embedding capacity under acceptable visual distortions, and can be applied to a magnified image at any resolution. Our proposed technique is feasible in reversible data hiding.

DE-Based Adaptive Reversible Data Hiding Scheme (DE 기반의 적응적인 가역정보은닉기법)

  • Choi, Jang-Hee;Yoon, Eun-Jun;Yoo, Kee-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • The many DE based data hiding schemes and the many data hiding schemes based on Histogram shifting are researched in spatial domain. The data hiding scheme based on Histogram shifting have an advantage of low distortion of the stego image. But the capacity is low than other schemes. On the other hands, the DE based data hiding schemes have an advantage of high capacity. But the quality of the stego image is low. In this paper, new data hiding scheme which has the similar capacity but the increased quality of the stego image is proposed. The prediction error is divided into blocks to embed the secret data in this scheme. The prediction errors in the block are scanned before the secret data is embedded. If one prediction error is low than the threshold at least, the block is changed to embed the secret data. Otherwise the secret data is not embedded. The distortion of the stego image is minimized by this method. But the block that the secret data embedded is marked in location map. So the additional information to extract the secret data and recover the cover image is needed.

A Data Hiding Method of Binary Images Using Pixel-value Weighting (이진 이미지에 대한 픽셀값 가중치를 이용한 자료 은닉 기법 연구)

  • Jung, Ki-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.68-75
    • /
    • 2008
  • This paper proposes a new data hiding method for binary images using the weighting value of pixel-value differencing. The binary cover image is partitioned into non-overlapping sub-blocks and find the most suitable position to embed a secret bit for each sub-block. The proposed method calculates the weighted value for a sub-block to pivot a pixel to be changed. This improves the image quality of the stego-image. The experimental results show that the proposed method achieves a good visual quality and high capacity.

Reversible Data Hiding Based on Block Median Preservation and image local characteristic

  • Qu, Xiao-Chao;Kim, Hyoung-Joong
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.986-989
    • /
    • 2011
  • Reversible data hiding is a technique that can embed information into cover media (image, video, voice signal) and can recover the original cover media after extracting the embedded information. In this papa, we propose a new reversible data hiding methods that based on block median preservation and the image local characteristic. By using the median value of a block, a high payload can be got and by considering the image local characteristic, a lot of distortion can be avoided and a high PSNR can be got. In the experiment, our methods can generate better result than the previous reversible data hiding methods.

An Efficient Reversible Data Hiding Algorithm (효율적인 가역 데이터 은닉 기법)

  • Jung, Soo-Mok
    • Journal of Service Research and Studies
    • /
    • v.6 no.1
    • /
    • pp.71-81
    • /
    • 2016
  • An efficient reversible data hiding algorithm was proposed in this paper. The original image can be recovered from the stego-image without distortion during the embedded data are extracted from the stego-image. The embedding data are greater than that of the previous algorithm and the PSNR value of the stego-image is guaranteed to be greater than 48dB. The performance of the proposed algorithm was proved by experimental results.

Optical Image Hiding Technique using Real-Valued Decoding Key (실수값 복원키를 이용한 광 영상 은닉 기술)

  • Cho, Kyu-Bo;Seo, Dong-Hoan;Choi, Eun-chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • In this paper, an optical image hiding technique using real-valued decoding key is proposed. In the embedding process, a each zero-padded original image placed in a quadrants on an input plane is multiplied by a statistically independent random phase pattern and is Fourier transformed. An encoded image is obtained by taking the real-valued data from the Fourier transformed image. And then a phase-encoded pattern, used as a hidden image and a decoding key, is generated by the use of multiple phase wrapping from the encoded images. A transmitted image is made from the linear superposition of the weighted hidden images and a cover image. In reconstruction process, the mirror reconstructed images can be obtained at two quadrants by the inverse-Fourier transform of the product of the transmitted image and the decoding key. Computer simulation and optical experiment are demonstrated in order to confirm the proposed technique.

A Data Hiding Scheme Based on Turtle-shell for AMBTC Compressed Images

  • Lee, Chin-Feng;Chang, Chin-Chen;Li, Guan-Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2554-2575
    • /
    • 2020
  • Data hiding technology hides secret information into the carrier, so that when the carrier is transmitted over network, it will not attract any malicious attention. Using data compression, it is possible to reduce the data size into a small compressed code, which can effectively reduce the time when transmitting compressed code on the network. In this paper, the main objective is to effectively combine these two technologies. We designed a data hiding scheme based on two techniques which are turtle-shell information hiding scheme and absolute moment block truncation coding. The experimental results showed that the proposed scheme provided higher embedding capacity and better image quality than other hiding schemes which were based on absolute moment block truncation coding.

Design of Fluctuation Function to Improve BER Performance of Data Hiding in Encrypted Image (암호화된 영상의 데이터 은닉 기법의 오류 개선을 위한 섭동 함수 설계)

  • Kim, Young-Hun;Lim, Dae-Woon;Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • Reversible data hiding is a technique to hide any data without affecting the original image. Zhang proposed the encryption of original image and a data hiding scheme in encrypted image. First, the encrypted image is decrypted and uses the fluctuation function which exploits the spatial correlation property of decrypted image to extract hidden data. In this paper, the new fluctuation function is proposed to reduce errors which arise from the process extracting hidden data and the performance is verified by simulation.

PROMISE: A QR Code PROjection Matrix Based Framework for Information Hiding Using Image SEgmentation

  • Yixiang Fang;Kai Tu;Kai Wu;Yi Peng;Yunqing Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.471-485
    • /
    • 2023
  • As data sharing increases explosively, such information encoded in QR code is completely public as private messages are not securely protected. This paper proposes a new 'PROMISE' framework for hiding information based on the QR code projection matrix by using image segmentation without modifying the essential QR code characteristics. Projection matrix mapping, matrix scrambling, fusion image segmentation and steganography with SEL(secret embedding logic) are part of the PROMISE framework. The QR code could be mapped to determine the segmentation site of the fusion image as a binary information matrix. To further protect the site information, matrix scrambling could be adopted after the mapping phase. Image segmentation is then performed on the fusion image and the SEL module is applied to embed the secret message into the fusion image. Matrix transformation and SEL parameters should be uploaded to the server as the secret key for authorized users to decode the private message. And it was possible to further obtain the private message hidden by the framework we proposed. Experimental findings show that when compared to some traditional information hiding methods, better anti-detection performance, greater secret key space and lower complexity could be obtained in our work.