• Title/Summary/Keyword: Image features matching

Search Result 338, Processing Time 0.022 seconds

Texture Comparison with an Orientation Matching Scheme

  • Nguyen, Cao Truong Hai;Kim, Do-Yeon;Park, Hyuk-Ro
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.389-398
    • /
    • 2012
  • Texture is an important visual feature for image analysis. Many approaches have been proposed to model and analyze texture features. Although these approaches significantly contribute to various image-based applications, most of these methods are sensitive to the changes in the scale and orientation of the texture pattern. Because textures vary in scale and orientations frequently, this easily leads to pattern mismatching if the features are compared to each other without considering the scale and/or orientation of textures. This paper suggests an Orientation Matching Scheme (OMS) to ease the problem of mismatching rotated patterns. In OMS, a pair of texture features will be compared to each other at various orientations to identify the best matched direction for comparison. A database including rotated texture images was generated for experiments. A synthetic retrieving experiment was conducted on the generated database to examine the performance of the proposed scheme. We also applied OMS to the similarity computation in a K-means clustering algorithm. The purpose of using K-means is to examine the scheme exhaustively in unpromising conditions, where initialized seeds are randomly selected and algorithms work heuristically. Results from both types of experiments show that the proposed OMS can help improve the performance when dealing with rotated patterns.

Feature Matching Algorithm Robust To Viewpoint Change (시점 변화에 강인한 특징점 정합 기법)

  • Jung, Hyun-jo;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2363-2371
    • /
    • 2015
  • In this paper, we propose a new feature matching algorithm which is robust to the viewpoint change by using the FAST(Features from Accelerated Segment Test) feature detector and the SIFT(Scale Invariant Feature Transform) feature descriptor. The original FAST algorithm unnecessarily results in many feature points along the edges in the image. To solve this problem, we apply the principal curvatures for refining it. We use the SIFT descriptor to describe the extracted feature points and calculate the homography matrix through the RANSAC(RANdom SAmple Consensus) with the matching pairs obtained from the two different viewpoint images. To make feature matching robust to the viewpoint change, we classify the matching pairs by calculating the Euclidean distance between the transformed coordinates by the homography transformation with feature points in the reference image and the coordinates of the feature points in the different viewpoint image. Through the experimental results, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load.

Seamline Determination from Images and Digital Maps for Image Mosaicking (모자이크 영상 생성을 위한 영상과 수치지도로부터 접합선 결정)

  • Kim, Dong Han;Oh, Chae-Young;Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.483-497
    • /
    • 2018
  • Image mosaicking, which combines several images into one image, is effective for analyzing images and important in various fields of spatial information such as a continuous image map. The crucial processes of the image mosaicking are optimal seamline determination and color correction of mosaicked images. In this study, the overlap regions were determined by SURF (Speeded Up Robust Features) for image matching. Based on the characteristics of the edges extracted by Canny filter, seamline candidates were selected from classified edges with their characteristics, and the edges were connected by using Dijkstra algorithm. In particular, anisotropic filter and image pyramid were applied to extract reliable seamlines. In addition, it was possible to determine seamlines effectively and efficiently by utilizing building and road layers from digital maps. Finally, histogram matching and seamline feathering were performed to improve visual quality of the mosaicked images.

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.

Union and Division using Technique in Fingerprint Recognition Identification System

  • Park, Byung-Jun;Park, Jong-Min;Lee, Jung-Oh
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.140-143
    • /
    • 2007
  • Fingerprint Recognition System is made up of Off-line treatment and On-line treatment; the one is registering all the information of there trieving features which are retrieved in the digitalized fingerprint getting out of the analog fingerprint through the fingerprint acquisition device and the other is the treatment making the decision whether the users are approved to be accessed to the system or not with matching them with the fingerprint features which are retrieved and database from the input fingerprint when the users are approaching the system to use. In matching between On-line and Off-line treatment, the most important thing is which features we are going to use as the standard. Therefore, we have been using "Delta" and "Core" as this standard until now, but there might have been some deficits not to exist in every person when we set them up as the standards. In order to handle the users who do not have those features, we are still using the matching method which enables us to make up of the spanning tree or the triangulation with the relations of the spanned feature. However, there are some overheads of the time on these methods and it is not sure whether they make the correct matching or not. In this paper, introduces a new data structure, called Union and Division, representing binary fingerprint image. Minutiae detecting procedure using Union and Division takes, on the average, 32% of the consuming time taken by a minutiae detecting procedure without using Union and Division.

Panoramic Image Stitching using Feature Extracting and Matching on Mobile Device (모바일 기기에서 특징적 추출과 정합을 활용한 파노라마 이미지 스티칭)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.97-102
    • /
    • 2016
  • Image stitching is a process of combining two or more images with overlapping area to create a panorama of input images, which is considered as an active research area in computer vision, especially in the field of augmented reality with 360 degree images. Image stitching techniques can be categorized into two general approaches: direct and feature based techniques. Direct techniques compare all the pixel intensities of the images with each other, while feature based approaches aim to determine a relationship between the images through distinct features extracted from the images. This paper proposes a novel image stitching method based on feature pixels with approximated clustering filter. When the features are extracted from input images, we calculate a meaning of the minutiae, and apply an effective feature extraction algorithm to improve the processing time. With the evaluation of the results, the proposed method is corresponding accurate and effective, compared to the previous approaches.

An Analysis of Similarity Measures for Area-based Multi-Image Matching (다중영상 영역기반 영상정합을 위한 유사성 측정방법 분석)

  • Noh, Myoung-Jong;Kim, Jung-Sub;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.143-152
    • /
    • 2012
  • It is well-known that image matching is necessary for automatic generation of 3D data such as digital surface data from aerial images. Recently developed aerial digital cameras allow to capture multi-strip images with higher overlaps and less occluded areas than conventional analogue cameras and that much of researches on multi-image matching have been performed, particularly effective methods of measuring a similarity among multi-images using point features as well as linear features. This research aims to investigate similarity measuring methods such as SSD and SNCC incorporated into a area based multi-image matching method based on vertical line locus. In doing this, different similarity measuring entities such as grey value, grey value gradient, and average of grey value and its gradient are implemented and analyzed. Further, both dynamic and pre-fixed adaptive-window size are tested and analyzed in their behaviors in measuring similarity among multi-images. The aerial images used in the experiments were taken by a DMC aerial frame camera in three strips. The over-lap and side-lap are about 80% and 60%, respectively. In the experiment, it was found that the SNCC as similarity measuring method, the average of grey value and its gradient as similarity measuring entity, and dynamic adaptive-window size can be best fit to measuring area-based similarity in area based multi-image matching method based on vertical line locus.

The Usage of Color & Edge Histogram Descriptors for Image Mining (칼라와 에지 히스토그램 기술자를 이용한 영상 마이닝 향상 기법)

  • An, Syungog;Park, Dong-Won;Singh, Kulwinder;Ma, Ming
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.5
    • /
    • pp.111-120
    • /
    • 2004
  • The MPEG-7 standard defines a set of descriptors that extracts low-level features such as color, texture and object shape from an image and generates metadata in order to represent these extracted information. But the matching performance for image mining ma y not be satisfactory by u sing only on e of these features. Rather than by combining these features we can achieve a better query performance. In this paper we propose a new image retrieval technique for image mining that combines the features extracted from MPEG-7 visual color and texture descriptors. Specifically, we use only some specifications of Scalable Color Descriptor (SCD) and Non-Homogeneous Texture Descriptor also known as Edge Histogram Descriptor (EHD) for the implementation of the color and edge histograms respectively. MPEG-7 standard defines $l_{1}$-norm based matching in EHD and SCD. But in our approach, for distance measurement, we achieve a better result by using cosine similarity coefficient for color histograms and Euclidean distance for edge histograms. Our approach toward this system is more experimental based than hypothetical.

  • PDF

Multi-granular Angle Description for Plant Leaf Classification and Retrieval Based on Quotient Space

  • Xu, Guoqing;Wu, Ran;Wang, Qi
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.663-676
    • /
    • 2020
  • Plant leaf classification is a significant application of image processing techniques in modern agriculture. In this paper, a multi-granular angle description method is proposed for plant leaf classification and retrieval. The proposed method can describe leaf information from coarse to fine using multi-granular angle features. In the proposed method, each leaf contour is partitioned first with equal arc length under different granularities. And then three kinds of angle features are derived under each granular partition of leaf contour: angle value, angle histogram, and angular ternary pattern. These multi-granular angle features can capture both local and globe information of the leaf contour, and make a comprehensive description. In leaf matching stage, the simple city block metric is used to compute the dissimilarity of each pair of leaf under different granularities. And the matching scores at different granularities are fused based on quotient space theory to obtain the final leaf similarity measurement. Plant leaf classification and retrieval experiments are conducted on two challenging leaf image databases: Swedish leaf database and Flavia leaf database. The experimental results and the comparison with state-of-the-art methods indicate that proposed method has promising classification and retrieval performance.

Fast Stitching Algorithm by using Feature Tracking (특징점 추적을 통한 다수 영상의 고속 스티칭 기법)

  • Park, Siyoung;Kim, Jongho;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.728-737
    • /
    • 2015
  • Stitching algorithm obtain a descriptor of the feature points extracted from multiple images, and create a single image through the matching process between the each of the feature points. In this paper, a feature extraction and matching techniques for the creation of a high-speed panorama using video input is proposed. Features from Accelerated Segment Test(FAST) is used for the feature extraction at high speed. A new feature point matching process, different from the conventional method is proposed. In the matching process, by tracking region containing the feature point through the Mean shift vector required for matching is obtained. Obtained vector is used to match the extracted feature points. In order to remove the outlier, the RANdom Sample Consensus(RANSAC) method is used. By obtaining a homography transformation matrix of the two input images, a single panoramic image is generated. Through experimental results, we show that the proposed algorithm improve of speed panoramic image generation compared to than the existing method.