• Title/Summary/Keyword: Image features

Search Result 3,385, Processing Time 0.029 seconds

Visual Saliency Detection Based on color Frequency Features under Bayesian framework

  • Ayoub, Naeem;Gao, Zhenguo;Chen, Danjie;Tobji, Rachida;Yao, Nianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.676-692
    • /
    • 2018
  • Saliency detection in neurobiology is a vehement research during the last few years, several cognitive and interactive systems are designed to simulate saliency model (an attentional mechanism, which focuses on the worthiest part in the image). In this paper, a bottom up saliency detection model is proposed by taking into account the color and luminance frequency features of RGB, CIE $L^*a^*b^*$ color space of the image. We employ low-level features of image and apply band pass filter to estimate and highlight salient region. We compute the likelihood probability by applying Bayesian framework at pixels. Experiments on two publically available datasets (MSRA and SED2) show that our saliency model performs better as compared to the ten state of the art algorithms by achieving higher precision, better recall and F-Measure.

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

Target Tracking Using Image Features in a Cluttered Environment (클러터환경에서 영상특징을 이용한 표적 추적)

  • Jung, Young-Hun;Kwak, Dong-Min;Kim, Do-Jong;Ko, Jung-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.209-216
    • /
    • 2012
  • In this paper, we propose a novel tracking method which uses image features consisted of the area, average intensity, aspect ratio of a target image for the real-time IR surveillance system. The image features of the ground target can be modeled as a random process with exponential autocorrelation function mathematically. Finally, we derived a discrete target dynamic equation including kinematic states and geometric states of the target. Simulation results shows that the performance of the proposed method is better than that of the previous tracking method.

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

EXTRACTION OF LANE-RELATED INFORMATION AND A REAL-TIME IMAGE PROCESSING ONBOARD SYSTEM

  • YI U. K.;LEE W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.171-181
    • /
    • 2005
  • The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lane­related information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.

Integration of ERS-2 SAR and IRS-1 D LISS-III Image Data for Improved Coastal Wetland Mapping of southern India

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Manjunath, A.S.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.351-361
    • /
    • 2003
  • As the launches of a series of remote sensing satellites, there are various multiresolution and multi-spectral images available nowadays. This diversity in remotely sensed image data has created a need to be able to integrate data from different sources. The C-band imaging radar of ERS-2 due to its high sensitivity to coastal wetlands holds tremendous potential in mapping and monitoring coastal wetland features. This paper investigates the advantages of using ERS-2 SAR data combined with IRS-ID LISS-3 data for mapping complex coastal wetland features of Tamil Nadu, southern India. We present a methodology in this paper that highlights the mapping potential of different combinations of filtering and integration techniques. The methodology adopted here consists of three major steps as following: (i) speckle noise reduction by comparative performance of different filtering algorithms, (ii) geometric rectification and coregistration, and (iii) application of different integration techniques. The results obtained from the analysis of optical and microwave image data have proved their potential use in improving interpretability of different coastal wetland features of southern India. Based visual and statistical analyzes, this study suggests that brovey transform will perform well in terms of preserving spatial and spectral content of the original image data. It was also realized that speckle filtering is very important before fusing optical and microwave data for mapping coastal mangrove wetland ecosystem.

DA-Res2Net: a novel Densely connected residual Attention network for image semantic segmentation

  • Zhao, Xiaopin;Liu, Weibin;Xing, Weiwei;Wei, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4426-4442
    • /
    • 2020
  • Since scene segmentation is becoming a hot topic in the field of autonomous driving and medical image analysis, researchers are actively trying new methods to improve segmentation accuracy. At present, the main issues in image semantic segmentation are intra-class inconsistency and inter-class indistinction. From our analysis, the lack of global information as well as macroscopic discrimination on the object are the two main reasons. In this paper, we propose a Densely connected residual Attention network (DA-Res2Net) which consists of a dense residual network and channel attention guidance module to deal with these problems and improve the accuracy of image segmentation. Specifically, in order to make the extracted features equipped with stronger multi-scale characteristics, a densely connected residual network is proposed as a feature extractor. Furthermore, to improve the representativeness of each channel feature, we design a Channel-Attention-Guide module to make the model focusing on the high-level semantic features and low-level location features simultaneously. Experimental results show that the method achieves significant performance on various datasets. Compared to other state-of-the-art methods, the proposed method reaches the mean IOU accuracy of 83.2% on PASCAL VOC 2012 and 79.7% on Cityscapes dataset, respectively.