• Title/Summary/Keyword: Image edge extraction

Search Result 335, Processing Time 0.026 seconds

Extraction of Tongue Region using Graph and Geometric Information (그래프 및 기하 정보를 이용한 설진 영역 추출)

  • Kim, Keun-Ho;Lee, Jeon;Choi, Eun-Ji;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2051-2057
    • /
    • 2007
  • In Oriental medicine, the status of a tongue is the important indicator to diagnose one's health like physiological and clinicopathological changes of inner parts of the body. The method of tongue diagnosis is not only convenient but also non-invasive and widely used in Oriental medicine. However, tongue diagnosis is affected by examination circumstances a lot like a light source, patient's posture and doctor's condition. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, segmenting a tongue is inevitable but difficult since the colors of a tongue, lips and skin in a mouth are similar. The proposed method includes preprocessing, graph-based over-segmentation, detecting positions with a local minimum over shading, detecting edge with color difference and estimating edge geometry from the probable structure of a tongue, where preprocessing performs down-sampling to reduce computation time, histogram equalization and edge enhancement. A tongue was segmented from a face image with a tongue from a digital tongue diagnosis system by the proposed method. According to three oriental medical doctors' evaluation, it produced the segmented region to include effective information and exclude a non-tongue region. It can be used to make an objective and standardized diagnosis.

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

A Study on the Multi-function Processor Unit Implementation for Binary Image Processing (이진영상처리를 위한 다기능 프로세서 장치구현에 관한 연구)

  • 기재조;허윤석;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.970-979
    • /
    • 1993
  • In this paper, a multi-function processor unit is implemented for binary image processing. This unit consists of a set of address generatior, window pipeline register, look up table, control unit, and two local memories .The merits of multi-function processor unit are more simpler than basic SAP and improved disposal speed. A simple software selection give the various choices of image sizes and it can process the function of smoothing, thinning, feature extraction, and edge detection, selectively or sequentially.

  • PDF

Design & Implementation of a PC-Cluster for Image Feature Extraction of a Content-Based Image Retrieval System (내용기반 화상검색 시스템의 화상 특징 추출을 위한 PC-Cluster의 설계 및 구현)

  • 김영균;오길호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.700-702
    • /
    • 2004
  • 본 논문에서는 내용 기반의 화상 검색 시스템을 위한 화상 특징 추출을 고속으로 수행하기 위하여 TCP/IP 프로토콜을 사용하는 LAN 환경에서 유휴(Idle) PC들을 사용한 PC 클러스터에 관해 연구하였다. 실험에 사용한 화상 특징(Image feature)으로서는 칼라의 응집도를 사용하는 CCV(Color Coherence Vector), 화상의 엔트로피를 정량화한 PIM(Picture Information Measure), Gaussian-Laplacian 에지 검출 연산을 사용한 SEV(Spatial Edge Histogram Vector)로서 이들을 추출하기 위한 Task를 Master rude에서 Slave rude들로 전송하고, 연산에 사용 될 화상 데이터를 전송한 후 연산을 수행하고 결과를 다시 Master node로 전송하는 전통적인 Task-Farming형태의 PC Cluster를 구성하였다. 연산에 참여하는 클러스터 노드의 개수를 증가시키며 Task와 화상데이터를 전송하여 이에 따른 연산시간을 측정하고 비교하였다. 실험 결과는 유휴 PC들로 구성된 PC클러스터를 이용한 효율적인 내용기반의 화상 검색 시스템을 구성하기 위해 활용이 가능하다.

  • PDF

Sparse Representation based Two-dimensional Bar Code Image Super-resolution

  • Shen, Yiling;Liu, Ningzhong;Sun, Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2109-2123
    • /
    • 2017
  • This paper presents a super-resolution reconstruction method based on sparse representation for two-dimensional bar code images. Considering the features of two-dimensional bar code images, Kirsch and LBP (local binary pattern) operators are used to extract the edge gradient and texture features. Feature extraction is constituted based on these two features and additional two second-order derivatives. By joint dictionary learning of the low-resolution and high-resolution image patch pairs, the sparse representation of corresponding patches is the same. In addition, the global constraint is exerted on the initial estimation of high-resolution image which makes the reconstructed result closer to the real one. The experimental results demonstrate the effectiveness of the proposed algorithm for two-dimensional bar code images by comparing with other reconstruction algorithms.

Object Recognition Algorithm with Partial Information

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.229-235
    • /
    • 2019
  • Due to the development of video and optical technology today, video equipments are being used in a variety of fields such as identification, security maintenance, and factory automation systems that generate products. In this paper, we investigate an algorithm that effectively recognizes an experimental object in an input image with a partial problem due to the mechanical problem of the input imaging device. The object recognition algorithm proposed in this paper moves and rotates the vertices constituting the outline of the experimental object to the positions of the respective vertices constituting the outline of the DB model. Then, the discordance values between the moved and rotated experimental object and the corresponding DB model are calculated, and the minimum discordance value is selected. This minimum value is the final discordance value between the experimental object and the corresponding DB model, and the DB model with the minimum discordance value is selected as the recognition result for the experimental object. The proposed object recognition method obtains satisfactory recognition results using only partial information of the experimental object.

Image Registration for High-Quality Vessel Visualization in Angiography (혈관조영영상에서 고화질 혈관가시화를 위한 영상정합)

  • Hong, Helen;Lee, Ho;Shin, Yeong-Gil
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.201-206
    • /
    • 2003
  • In clinical practice, CT Angiography is a powerful technique for the visualziation of blood flow in arterial vessels throughout the body. However CT Angiography images of blood vessels anywhere in the body may be fuzzy if the patient moves during the exam. In this paper, we propose a novel technique for removing global motion artifacts in the 3D space. The proposed methods are based on the two key ideas as follows. First, the method involves the extraction of a set of feature points by using a 3D edge detection technique based on image gradient of the mask volume where enhanced vessels cannot be expected to appear, Second, the corresponding set of feature points in the contrast volume are determined by correlation-based registration. The proposed method has been successfully applied to pre- and post-contrast CTA brain dataset. Since the registration for motion correction estimates correlation between feature points extracted from skull area in mask and contrast volume, it offers an accelerated technique to accurately visualize blood vessels of the brain.

  • PDF

Object Recognition using Comparison of External Boundary

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.134-142
    • /
    • 2019
  • As the 4th industry has been widely distributed, there is a need for a process of real-time image recognition in various fields such as identification of company employees, security maintenance, and development of military weapons. Therefore, in this paper, we will propose an algorithm that effectively recognizes a test object by comparing it with the DB model. The proposed object recognition system first expresses the outline of the test object as a set of vertices with the distances of predefined length or more. Then, the degree of matching of the structures of the two objects is calculated by examining the distances to the outline of the DB model from the vertices constituting the test object. Because the proposed recognition algorithm uses the outline of the object, the recognition process is easy to understand, simple to implement, and a satisfactory recognition result is obtained.

A Technique for Image Processing of Concrete Surface Cracks (콘크리트 표면 균열의 영상 처리 기법)

  • Kim Kwang-Baek;Cho Jae-Hyun;Ahn Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1575-1581
    • /
    • 2005
  • Recently, further study is being done on the affect of crack on concrete structure and many people have made every endeavor not to leave it unsettled but to minimize it by repair works. In this paper we propose the image processing method that do not remain manual but automatically process the length, the direction and e width of cracks on concrete surface. First, we calibrate light's affect from image by using closing operation, one of morphology methods that can extract the feature of oracle and we extract the edge of crack image by sobel mask. After it, crack image is binarized by iteration binarization. And we extract the edge of cracks using noise elimination method that use an average of adjacent pixels by 3${\times}$3 mask and Glassfire Labeling algorithm. on, in this paper we propose an image processing method which can automatically measure the length, the direction and the width of cracks using the extracted edges of cracks. The results of experiment showed that the proposed method works better on the extraction of concrete cracks. Also our method showed the possibility that inspector's decision is unnecessary.