• Title/Summary/Keyword: Image denoising

검색결과 219건 처리시간 0.024초

Speckle noise reduction in SAR images using an adaptive wavelet Shrinkage method

  • Kim, Kwang-Yong;Jeong, Soo;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.303-307
    • /
    • 2002
  • Although Synthetic Aperture Radar(SAR) is a very powerful and attractive tool, automatic interpretation of SAR images is extremely difficult because of several reason. Spatially, speckle noise reduction in SAR images is important step to interpret the SAR image at the preprocessing step. The speckle noise in SAR images is modeled to be multiplicative, and therefore, a signal-dependent noise. So, it has deflated many image-denoising algorithms that are based on additive noise model. In this paper, we propose an adaptive wavelet shrinkage method for speckle noise reduction in SAR images by analyzing the high frequency level in detail. We first decompose minutely the high frequency level to analyze the noise level. And then, we determine the weighting threshold value per the level, and layer. Finally, using those weighting threshold, we produce the efficient wavelet shrinkage method. So, this method not only reduces the speckle noise, but also preserves image detail and sharpness.

  • PDF

편미분 방정식을 이용한 이미지 복원 (Image Restoration Using Partial Differential Equation)

  • 주기세
    • 한국정보통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.2271-2282
    • /
    • 2006
  • 본 논문은 총 변화량 최소화와 같은 편 미분방정식을 기본으로 한 영상 복원에 제기된 이슈에 관련된다. 총 변화량 최소화방법과 같은 평활화 연산자의 과도한 분산과 계단화와 같은 문제점들에 대하여 특별히 연구한다. 계단화와 과도한 분산을 방지하기 위하여 대수시스템에서의 축척과 비 오목형 최소화 기법이 각각 고려된다. 더군다나 에지를 좀더 잘 보존하기 위한 다양한 제약 매개변수가 소개된다. 제안된 알고리즘이 소음제거에 있어서 효율적이고 합리적임이 수학적으로 증명되며 다양한 실험 결과가 보여진다.

Efficient Median Filter Using Irregular Shape Window

  • Pok, Gou Chol
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.601-607
    • /
    • 2018
  • Median filtering is a nonlinear method which is known to be effective in removing impulse noise while preserving local image structure relatively well. However, it could still suffer the smearing phenomena of edges and fine details into neighbors due to undesirable influence from the pixels whose values are far off from the true value of the pixel at hand. This drawback mainly comes from the fact that median filters typically employ a regular shape window for collecting the pixels used in the filtering operation. In this paper, we propose a median filtering method which employs an irregular shape filter window in collecting neighboring pixels around the pixel to be denoised. By employing an irregular shape window, we can achieve good noise suppression while preserving image details. Experimental results have shown that our approach is superior to regular window-based methods.

Simple Denoising Method for Novel Speckle-shifting Ghost Imaging with Connected-region Labeling

  • Yuan, Sheng;Liu, Xuemei;Bing, Pibin
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.220-226
    • /
    • 2019
  • A novel speckle-shifting ghost imaging (SSGI) technique is proposed in this paper. This method can effectively extract the edge of an unknown object without achieving its clear ghost image beforehand. However, owing to the imaging mechanism of SSGI, the imaging result generally contains serious noise. To solve the problem, we further propose a simple and effective method to remove noise from the speckle-shifting ghost image with a connected-region labeling (CRL) algorithm. In this method, two ghost images of an object are first generated according to SSGI. A threshold and the CRL are then used to remove noise from the imaging results in turn. This method can retrieve a high-quality image of an object with fewer measurements. Numerical simulations are carried out to verify the feasibility and effectiveness.

깊은 잔차 U-Net 구조를 이용한 실제 카메라 잡음 영상 디노이징 (Real-world noisy image denoising using deep residual U-Net structure)

  • 장영실;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.119-121
    • /
    • 2019
  • 부가적 백색 잡음 모델(additive white Gaussian noise, AWGN에서 학습된 깊은 신경만 (deep neural networks)을 이용한 잡음 제거기는 제거하려는 잡음이 AWGN인 경우에는 뛰어난 성능을 보이지만 실제 카메라 잡음에 대해서 잡음 제거를 시도하였을 때는 성능이 크게 저하된다. 본 논문은 U-Net 구조의 깊은 인공신경망 모델에 residual block을 결합함으로서 실제 카메라 영상에서 기존 알고리즘보다 뛰어난 성능을 지니는 신경망을 제안하다. 제안한 방법을 통해 Darmstadt Noise Dataset에서 PSNR과 SSIM 모두 CBDNet 대비 향상됨을 확인하였다.

  • PDF

적응적 가중치를 사용한 비국소적 영상 잡음 제거 기법 (Nonlocal Image Denoising Algorithm Using Adaptive Weights)

  • 이철;이철우;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.394-395
    • /
    • 2010
  • 본 논문은 최소 평균 제곱 오차(minimum mean-square error: MMSE)에 기반한 비국소적 (nonlocal) 평균 영상 잡음 제거기법을 제안한다. 제안하는 기법에서는 기존의 비국소적 평균 기법에 추정 이론을 적용하여 잡음 제거에 사용되는 이웃 블록 또한 잡음을 포함하는 일반적인 경우로 확장하여 이웃 블록에 인가되는 가중치를 적응적으로 조절한다. 컴퓨터 모의실험을 통해 제안하는 알고리듬이 기존의 비국소적 기법에 비해 잡음 제거 성능이 향상됨을 확인한다.

  • PDF

SVDD 기반 노이즈 제거 기법을 이용한 얼굴 영상의 복원 (Reconstruction of Facial Image Utilizing SVDD based Denoising Method)

  • 강대성;김종호;박주영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2903-2905
    • /
    • 2005
  • 많은 경우, 부분 손상된 얼굴 영상을 복원해야 할 필요가 있다. 대표적인 예로는 감시카메라에 찍힌 범인의 얼굴 영상이 이에 속한다. 이런 경우 얼굴의 중요한 부분이 가려져 있기 때문에 자동 얼굴 인식 시스템이나 사람의 관찰로는 그 부분을 인식하기는 매우 어렵다. 이 논문에서는 어려움을 극복하기 위해 새롭게 개발된 SVDD기반 노이즈 제거 기법을 부분 손상된 얼굴 영상에 적용한 문제를 고려해 보았다.

  • PDF

비대칭 분해 필터를 통한 웨이블릿 영역에서의 영상 잡음 제거 (Image Denoising using an Asymmetric Analysis Filter in the Wavelet Domain)

  • 오준환;최창렬;정제창;김영섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1723-1726
    • /
    • 2003
  • 본 논문에서는 상세 부밴드에서의 PSNR과 웨이블릿 계수의 계층적 데이터 구조 측면에 초점을 맞추어 웨이블릿 영역에서의 신호 해석을 통한 잡음 제거를 연구하였다. 제안된 방식은 기존의 방식들과는 달리 수직 또는 수평 방향의 고주파 성분에 의한 상세 부밴드에서의 에너지 편중을 고려하여 이들의 에너지의 편중에 따른 분해 필터를 적응적으로 설계하고 부밴드의 에너지를 재분배시켜 성능을 향상 시켰으며, 웨이블릿 계수의 상호 의존성을 고려한 지역윈도우 사용해 기존의 방식을 개선하였다.

  • PDF

Soft Threshold 기법에 의한 영상신호 잡음제거에서 차신호를 이용한 계산량 감소 (Reducing Computational Operations Using Difference Signal in Denoising of Image Signals by Soft-Threshold)

  • 우창용;박남천;주창복;권기룡
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.14-17
    • /
    • 2003
  • 웨이블릿 변환 영역에서 잡음제거 방법 중 Visushrink 추정에 사용되는 경계값은 측정 데이터 수와 잡음편차에 비례하는 것으로 알려져 있으나 잡음편차가 알려지지 않은 경우 Donoho는 웨이블릿 변환 영역의 최고대역에서 잡음편차 추정 방법을 제시하였다. 본 논문에서는 분산이 데이터 수에 반비례함을 이용하여 threshold 기법을 이용하여 잡음제거 시 계산량을 감소를 목적으로 차 신호를 이용하여 측정데이터 수를 줄인 후 영상신호의 가우시안 잡음을 soft threshold 기법을 적용하고 이 기법의 실용성을 밝혔다.

  • PDF

웨이브릿 변환 영역에서 단조변환을 이용하여 경계값을 결정하는 Soft-Threshold 기법의 영상잡음 제거 (Denoising of Image Signals by the Soft-Threshold Technique with the Monotonic Transform)

  • 우창용;박남천
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.281-284
    • /
    • 2000
  • 이 논문은 웨이브릿 변환 영역의 백색 가우시안 잡음이 부가된 영상에서 최고 대역에서는 Donoho가 제시한 Visushrink 방법으로 잡음을 제거하고 최저대역을 제외한 나머지 대역들은 Monotonic 변환을 이용한 각 대역의 잡음편차를 추정하고 이를 VisuShrink 경계값에 적용하여 Soft-Threshold 기법으로 영상잡음을 제거하는 방법을 제안하였다. 실험 결과 이 논문에서 제시된 혼합방법에 의한 잡음 제거는 Donoho가 제시한 VisuShrink 방법보다 1㏈ 정도의 잡음제거 개선 효과가 있었다.

  • PDF