• Title/Summary/Keyword: Image caption extraction

Search Result 15, Processing Time 0.023 seconds

Web Image Caption Extraction using Positional Relation and Lexical Similarity (위치적 연관성과 어휘적 유사성을 이용한 웹 이미지 캡션 추출)

  • Lee, Hyoung-Gyu;Kim, Min-Jeong;Hong, Gum-Won;Rim, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.335-345
    • /
    • 2009
  • In this paper, we propose a new web image caption extraction method considering the positional relation between a caption and an image and the lexical similarity between a caption and the main text containing the caption. The positional relation between a caption and an image represents how the caption is located with respect to the distance and the direction of the corresponding image. The lexical similarity between a caption and the main text indicates how likely the main text generates the caption of the image. Compared with previous image caption extraction approaches which only utilize the independent features of image and captions, the proposed approach can improve caption extraction recall rate, precision rate and 28% F-measure by including additional features of positional relation and lexical similarity.

A Method for Caption Segmentation using Minimum Spanning Tree

  • Chun, Byung-Tae;Kim, Kyuheon;Lee, Jae-Yeon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.906-909
    • /
    • 2000
  • Conventional caption extraction methods use the difference between frames or color segmentation methods from the whole image. Because these methods depend heavily on heuristics, we should have a priori knowledge of the captions to be extracted. Also they are difficult to implement. In this paper, we propose a method that uses little heuristics and simplified algorithm. We use topographical features of characters to extract the character points and use KMST(Kruskal minimum spanning tree) to extract the candidate regions for captions. Character regions are determined by testing several conditions and verifying those candidate regions. Experimental results show that the candidate region extraction rate is 100%, and the character region extraction rate is 98.2%. And then we can see the results that caption area in complex images is well extracted.

  • PDF

An Effective Method for Replacing Caption in Video Images (비디오 자막 문자의 효과적인 교환 방법)

  • Chun Byung-Tae;Kim Sook-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.97-104
    • /
    • 2005
  • Caption texts frequently inserted in a manufactured video image for helping an understanding of the TV audience. In the movies. replacement of the caption texts can be achieved without any loss of an original image, because the caption texts have their own track in the films. To replace the caption texts in early methods. the new texts have been inserted the caption area in the video images, which is filled a certain color for removing established caption texts. However, the use of these methods could be lost the original images in the caption area, so it is a Problematic method to the TV audience. In this Paper, we propose a new method for replacing the caption text after recovering original image in the caption area. In the experiments. the results in the complex images show some distortion after recovering original images, but most results show a good caption text with the recovered image. As such, this new method is effectively demonstrated to replace the caption texts in video images.

  • PDF

Methods for Video Caption Extraction and Extracted Caption Image Enhancement (영화 비디오 자막 추출 및 추출된 자막 이미지 향상 방법)

  • Kim, So-Myung;Kwak, Sang-Shin;Choi, Yeong-Woo;Chung, Kyu-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.235-247
    • /
    • 2002
  • For an efficient indexing and retrieval of digital video data, research on video caption extraction and recognition is required. This paper proposes methods for extracting artificial captions from video data and enhancing their image quality for an accurate Hangul and English character recognition. In the proposed methods, we first find locations of beginning and ending frames of the same caption contents and combine those multiple frames in each group by logical operation to remove background noises. During this process an evaluation is performed for detecting the integrated results with different caption images. After the multiple video frames are integrated, four different image enhancement techniques are applied to the image: resolution enhancement, contrast enhancement, stroke-based binarization, and morphological smoothing operations. By applying these operations to the video frames we can even improve the image quality of phonemes with complex strokes. Finding the beginning and ending locations of the frames with the same caption contents can be effectively used for the digital video indexing and browsing. We have tested the proposed methods with the video caption images containing both Hangul and English characters from cinema, and obtained the improved results of the character recognition.

Efficient Object Classification Scheme for Scanned Educational Book Image (교육용 도서 영상을 위한 효과적인 객체 자동 분류 기술)

  • Choi, Young-Ju;Kim, Ji-Hae;Lee, Young-Woon;Lee, Jong-Hyeok;Hong, Gwang-Soo;Kim, Byung-Gyu
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1323-1331
    • /
    • 2017
  • Despite the fact that the copyright has grown into a large-scale business, there are many constant problems especially in image copyright. In this study, we propose an automatic object extraction and classification system for the scanned educational book image by combining document image processing and intelligent information technology like deep learning. First, the proposed technology removes noise component and then performs a visual attention assessment-based region separation. Then we carry out grouping operation based on extracted block areas and categorize each block as a picture or a character area. Finally, the caption area is extracted by searching around the classified picture area. As a result of the performance evaluation, it can be seen an average accuracy of 83% in the extraction of the image and caption area. For only image region detection, up-to 97% of accuracy is verified.

Study on News Video Character Extraction and Recognition (뉴스 비디오 자막 추출 및 인식 기법에 관한 연구)

  • 김종열;김성섭;문영식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.10-19
    • /
    • 2003
  • Caption information in news videos can be useful for video indexing and retrieval since it usually suggests or implies the contents of the video very well. In this paper, a new algorithm for extracting and recognizing characters from news video is proposed, without a priori knowledge such as font type, color, size of character. In the process of text region extraction, in order to improve the recognition rate for videos with complex background at low resolution, continuous frames with identical text regions are automatically detected to compose an average frame. The image of the averaged frame is projected to horizontal and vertical direction, and we apply region filling to remove backgrounds to produce the character. Then, K-means color clustering is applied to remove remaining backgrounds to produce the final text image. In the process of character recognition, simple features such as white run and zero-one transition from the center, are extracted from unknown characters. These feature are compared with the pre-composed character feature set to recognize the characters. Experimental results tested on various news videos show that the proposed method is superior in terms of caption extraction ability and character recognition rate.

Caption Extraction in News Video Sequence using Frequency Characteristic

  • Youglae Bae;Chun, Byung-Tae;Seyoon Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.835-838
    • /
    • 2000
  • Popular methods for extracting a text region in video images are in general based on analysis of a whole image such as merge and split method, and comparison of two frames. Thus, they take long computing time due to the use of a whole image. Therefore, this paper suggests the faster method of extracting a text region without processing a whole image. The proposed method uses line sampling methods, FFT and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 92% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image, and fast skipping of the images that do not contain a text.

  • PDF

A Method for Character Segmentation using MST(Minimum Spanning Tree) (MST를 이용한 문자 영역 분할 방법)

  • Chun, Byung-Tae;Kim, Young-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.73-78
    • /
    • 2006
  • Conventional caption extraction methods use the difference between frames or color segmentation methods from the whole image. Because these methods depend heavily on heuristics, we should have a priori knowledge of the captions to be extracted. Also they are difficult to implement. In this paper, we propose a method that uses little heuristic and simplified algorithm. We use topographical features of characters to extract the character points and use MST(Minimum Spanning Tree) to extract the candidate regions for captions. Character regions are determined by testing several conditions and verifying those candidate regions. Experimental results show that the candidate region extraction rate is 100%, and the character region extraction rate is 98.2%. And then we can see the results that caption area in complex images is well extracted.

  • PDF

Caption Detection and Recognition for Video Image Information Retrieval (비디오 영상 정보 검색을 위한 문자 추출 및 인식)

  • 구건서
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.7
    • /
    • pp.901-914
    • /
    • 2002
  • In this paper, We propose an efficient automatic caption detection and location method, caption recognition using FE-MCBP(Feature Extraction based Multichained BackPropagation) neural network for content based retrieval of video. Frames are selected at fixed time interval from video and key frames are selected by gray scale histogram method. for each key frames, segmentation is performed and caption lines are detected using line scan method. lastly each characters are separated. This research improves speed and efficiency by color segmentation using local maximum analysis method before line scanning. Caption detection is a first stage of multimedia database organization and detected captions are used as input of text recognition system. Recognized captions can be searched by content based retrieval method.

  • PDF

Extraction of Features in key frames of News Video for Content-based Retrieval (내용 기반 검색을 위한 뉴스 비디오 키 프레임의 특징 정보 추출)

  • Jung, Yung-Eun;Lee, Dong-Seop;Jeon, Keun-Hwan;Lee, Yang-Weon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2294-2301
    • /
    • 1998
  • The aim of this paper is to extract features from each news scenes for example, symbol icon which can be distinct each broadcasting corp, icon and caption which are has feature and important information for the scene in respectively, In this paper, we propose extraction methods of caption that has important prohlem of news videos and it can be classified in three steps, First of al!, we converted that input images from video frame to YIQ color vector in first stage. And then, we divide input image into regions in clear hy using equalized color histogram of input image, In last, we extracts caption using edge histogram based on vertical and horizontal line, We also propose the method which can extract news icon in selected key frames by the difference of inter-histogram and can divide each scene by the extracted icon. In this paper, we used comparison method of edge histogram instead of complex methcxls based on color histogram or wavelet or moving objects, so we shorten computation through using simpler algorithm. and we shown good result of feature's extraction.

  • PDF