• Title/Summary/Keyword: Image Smoothing

Search Result 270, Processing Time 0.024 seconds

SPECKLE NOISE SMOOTHING USING AN MODIFIED MEAN CURVATURE DIFFUSION FILTER

  • Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.159-162
    • /
    • 2008
  • This paper presents a modified mean curvature diffusion filter to smooth speckle noise in images. Mean curvature diffusion filter has already shown good results in reducing noise in images while preserving fine details. In the mean curvature diffusion, the rate of smoothing is controlled by the local value of the diffusion coefficient chosen to be a function of the local image gradient magnitude. In this paper, the diffusion coefficient is modified to be controlled adaptively by local image surface slope and heterogeneity. The local surface slope contributes to preserving details (e.g.edges) in image and the local surface heterogeneity helps the smoothing filter consider the amount of noise in both edge and non-edge area. The proposed filter's performance is demonstrated by quantitative experiments using speckle noised aerial image and TerraSAR-X satellite image.

  • PDF

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR 기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun;Sohn Hong-Gyoo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.187-192
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF

ENHANCEMENT AND SMOOTHING OF HYPERSPECTAL REMOTE SENSING DATA BY ADVANCED SCALE-SPACE FILTERING

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.736-739
    • /
    • 2006
  • While hyperspectral data are very rich in information, their processing poses several challenges such as computational requirements, noise removal and relevant information extraction. In this paper, the application of advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool, consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the effectiveness of the developed scale space filtering for the enhancement and smoothing of hyperspectral remote sensing data and their advantage against watershed over-segmentation problems and edge detection.

  • PDF

Adaptive Contour Smoothing Based on Inter-region Contrast (영역간 대조를 이용한 적응적 윤곽선 평활화)

  • 이시웅;김차종;이정환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.122-125
    • /
    • 2003
  • An adaptive contour smoothing algorithm designed as a preprocessor for shape coders is presented. In the proposed method, the degree of the adaptive smoothing is controlled based on the significance of each contour point, which is quantified according to inter-region contrast in an intensity image. The actual smoothing consists of an expansion operator and a thinning algorithm. Experimental results show that the proposed method results in a saving of about 20% in number of coded bits with a negligible additional texture degradation in the reconstructed intensity image.

  • PDF

A Study on Measurement of Micro Weld Deformation by Using PS-ESPI (위상이동 ESPI를 이용한 미세용접변형 측정에 관한 연구)

  • Lee, Gun-Ha;Kim, Ji-Tae;Na, Suck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2535-2540
    • /
    • 2002
  • ESPI is a noncontact, nondestructive and relatively fast inspection method. For these reasons ESPI is being applied as a valuable tool in the nondestructive evaluation of structural components. Phase shifting ESPI is used more effectively than the traditional ESPI because spatial resolution of small object displacements are improved and numerical phase values are obtained for all pixels in the image. Consequently the quantitative measurement of deformation is possible. ESPI fringe patterns are contaminated with high levels of speckle noise. Therefore the phase image is to be smoothed to remove the noise and obtain a better signal-to-noise ratio. In this study, smoothing is done by phase shifting convolution to avoid smoothing errors close to the 2$\pi$ phase ambiguities in the deformation phase image, and median filter is used as a smoothing filter.

Halftone Noise Removal in Scanned Images using HOG based Adaptive Smoothing Filter (HOG 기반의 적응적 평활화를 이용한 스캔된 영상의 하프톤 잡음 제거)

  • Hur, Kyu-Sung;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.316-324
    • /
    • 2012
  • In this paper, a novel descreening method using HOG(histogram of gradient)-based adaptive smoothing filter is proposed. Conventional edge-oriented smoothing methods does not provide enough smoothing to the halftone image due to the edge-like characteristic of the halftone noise. Moreover, clustered-dot halftoning method, which is commonly used in printing tends to create Moire pattern because of the intereference in color channels. Therefore, the proposed method uses HOG to distinguish edges and the amount of smoothing to be performed on the halftone image is then calculated according to the magnitude of the HOG in the edge and edge normal orientation. The proposed method was tested on various scanned halftone materials, and the results show that it effectively removes halftone noises as well as Moire pattern while preserving image details.

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang;Seungwan Lee;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1527-1532
    • /
    • 2023
  • The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

Multistep Adaptive Smoothing Technique of Speckle Images (스펙클 영상의 다단계 적응 평활화 기법)

  • 김태균;남권문;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.85-93
    • /
    • 1992
  • In this paper, we propose a parameter-free smoothing method for speckle images, i.e., an adaptive least squares image smoothing technique implemented in a multistep environment. The pertinent smoothing window size at a given pixel is determined by the discontinuity measure which is defined by the ratio of the local variance and mean squares of intensity values of pixels over the smoothing window centered there. The mode of the discontinuity measure at each step is estimated to replace the noise variance parameter that is required in the adaptive smoothing. Computer simulation shows that the proposed multistep technique can smooth homogeneous regions satisfactorily while preserving fine details near boundaries.

  • PDF

Optimization of Non-Local Means Algorithm in Low-Dose Computed Tomographic Image Based on Noise Level and Similarity Evaluations (노이즈 레벨 및 유사도 평가 기반 저선량 조건의 전산화 단층 검사 영상에서의 비지역적 평균 알고리즘의 최적화)

  • Ha-Seon Jeong;Ie-Jun Kim;Su-Bin Park;Suyeon Park;Yunji Oh;Woo-Seok Lee;Kang-Hyeon Seo;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • In this study, we optimized the FNLM algorithm through a simulation study and applied it to a phantom scanned by low-dose CT to evaluate whether the FNLM algorithm can be used to obtain improved image quality images. We optimized the FNLM algorithm with MASH phantom and FASH phantom, which the algorithm was applied with MATLAB, increasing the smoothing factor from 0.01 to 0.05 with increments of 0.001 and measuring COV, RMSE, and PSNR values of the phantoms. For both phantom, COV and RMSE decreased, and PSNR increased as the smoothing factor increased. Based on the above results, we optimized a smoothing factor value of 0.043 for the FNLM algorithm. Then we applied the optimized FNLM algorithm to low dose lung CT and lung CT under normal conditions. In both images, the COV decreased by 55.33 times and 5.08 times respectively, and we confirmed that the quality of the image of low dose CT applying the optimized FNLM algorithm was 5.08 times better than the image of lung CT under normal conditions. In conclusion, we found that the smoothing factor of 0.043 among the factors of the FNLM algorithm showed the best results and validated the performance by reducing the noise in the low-quality CT images due to low dose with the optimized FNLM algorithm.

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.85-94
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF