• 제목/요약/키워드: Image Set Segmentation

검색결과 195건 처리시간 0.021초

AUTOMATIC DETECTION OF OIL SPILLS WITH LEVEL SET SEGMENTATION TECHNIQUE FROM REMOTELY SENSED IMAGERY

  • Konstantinos, Karantzalos;Demetre, Argialas
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.126-129
    • /
    • 2006
  • The marine environment is under considerable threat from intentional or accidental oil spills, ballast water discharged, dredging and infilling for coastal development, and uncontrolled sewage and industrial wastewater discharges. Monitoring spills and illegal oil discharges is an important component in ensuring compliance with marine protection legislation and general protection of the coastal environments. For the monitoring task an image processing system is needed that can efficiently perform the detection and the tracking of oil spills and in this direction a significant amount of research work has taken place mainly with the use of radar (SAR) remote sensing data. In this paper the level set image segmentation technique was tested for the detection of oil spills. Level set allow the evolving curve to change topology (break and merge) and therefore boundaries of particularly intricate shapes can be extracted. Experimental results demonstrated that the level set segmentation can be used for the efficient detection and monitoring of oil spills, since the method coped with abrupt shape’s deformations and splits.

  • PDF

레벨셋을 이용한 특정 영역의 영상 세그먼테이션 (Image Segmentation of Special Area Using the Level Set)

  • 주기세;조덕상
    • 한국정보통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.967-975
    • /
    • 2010
  • 영상 세그먼테이션은 배경으로부터 객체들을 구별하는 것으로서, 영상 분석과 해석을 하는데 있어서 첫 번째 단계에 해당한다. 그러나 활성 외곽선 모델은 위상이 2개밖에 없으므로 정확하게 원하는 객체들을 추출할 수가 없다. 본 논문에서 원하는 특정한 범위의 명암도를 갖는 객체들을 추출하기 위해서 초기 곡선을 객체들 근처에 구성함으로써 바라는 윤곽을 찾는 방법을 제안한다. 초기 곡선은 히스토그램 평활화, 가우시안 평활화, 임계치를 이용하여 구한다. 제안한 방법은 초기 곡선을 관심영역에 최대 근접시키므로 계산 속도를 줄이고 원하는 영역을 정확하게 추출할 수 있다. CT 영상과 MR 영상에 적용한 결과 제안한 방법이 활성 외곽선 모델보다 더 효과적임을 보였다.

SIMULTANEOUS FOREGROUND AND BACKGROUND SEGMENTATION WITH LEVEL SET FUNCTION

  • Lee, Suk-Ho
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권4호
    • /
    • pp.315-321
    • /
    • 2009
  • In this paper, a level set based energy functional is proposed, the minimization of which results in simultaneous reference background image modeling and foreground segmentation. Due to the mutual constraint of the two processes, a good estimate of the background can be obtained with a small number of frames, and due to the use of the level set, an Euler-Lagrange equation that directly solves the problem can be derived.

  • PDF

볼륨영상 분할을 위한 새로운 레벨 셋 방법과 기존 방법의 성능비교 (Performance Comparison Between New Level Set Method and Previous Methods for Volume Images Segmentation)

  • 이명은;조완현;김선월;진연연;김수형
    • 정보처리학회논문지B
    • /
    • 제18B권3호
    • /
    • pp.131-138
    • /
    • 2011
  • 본 논문에서는 볼륨 의료영상 분할에 대한 기존의 레벨 셋 기법과 제안하는 방법의 성능을 비교하고자 한다. 기존의 방법들은 영역의 정보만을 이용하여 분할을 시행하므로, 영상의 종류에 따라서 정확한 분할을 못한 경우가 있다. 따라서 새롭게 제안하는 방법은 정확한 분할 결과를 위하여 영상의 객체가 가지고 있는 에지 정보와 영역 정보를 함께 이용한다. 에지 정보는 레벨 셋의 곡면이 객체의 표면에 잘 도달할 수 있도록 해주는 기울기 벡터장을 이용하고, 영역 정보는 각 영역에서 픽셀의 밝기 값을 가우시안 분포를 이용하여 통계적 모델로 적합시킴으로써 영상의 분할에 적용하였다. 또한, 곡면 주변 잡음의 영향을 최소화 시켜주는 정규화 항을 사용한다. 기존의 레벨 셋 기반의 방법들과 제안한 방법의 성능 평가를 위하여 실제 볼륨 의료영상에 대하여 다양한 실험을 실시하고, 분할된 결과의 비교를 통하여 제안된 방법의 우수성을 입증한다.

Morphological segmentation based on edge detection-II for automatic concrete crack measurement

  • Su, Tung-Ching;Yang, Ming-Der
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.727-739
    • /
    • 2018
  • Crack is the most common typical feature of concrete deterioration, so routine monitoring and health assessment become essential for identifying failures and to set up an appropriate rehabilitation strategy in order to extend the service life of concrete structures. At present, image segmentation algorithms have been applied to crack analysis based on inspection images of concrete structures. The results of crack segmentation offering crack information, including length, width, and area is helpful to assist inspectors in surface inspection of concrete structures. This study proposed an algorithm of image segmentation enhancement, named morphological segmentation based on edge detection-II (MSED-II), to concrete crack segmentation. Several concrete pavement and building surfaces were imaged as the study materials. In addition, morphological operations followed by cross-curvature evaluation (CCE), an image segmentation technique of linear patterns, were also tested to evaluate their performance in concrete crack segmentation. The result indicates that MSED-II compared to CCE can lead to better quality of concrete crack segmentation. The least area, length, and width measurement errors of the concrete cracks are 5.68%, 0.23%, and 0.00%, respectively, that proves MSED-II effective for automatic measurement of concrete cracks.

해부병리조직에 대한 칼라 영상분석 (Color Image Analysis of Histological tissue Sections)

  • 최흥국
    • 한국정보처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.253-260
    • /
    • 1999
  • 본 논문에서는 조합된 텍스쳐와 칼라 정보로부터 다변수의 선형 구별 알고리즘을 사용하여 영상분할에 대한 새로운 방법론의 개발을 제시한다. 그 칼라 텍스쳐는 칼라 영상의 공간과 색깔의 밴드로부터 한 화소가 갖는 3X3의 마스크에서 Haralick 과 Pressman의 텍스쳐 특성들을 계산했다. 모두 9X28개의 텍스쳐 특성들 중에서 학습을 기반으로 크게 식별자(classifier)에 영향을 주는 특성들을 도출하였으며 결과적으로 뽑혀진 10개의 특성이 한 영상을 4부분으로 분할하는데 사용되어졌다. 이 방법론의 결과로 얻어진 영상은 고전적인 칼라와 텍스쳐 분할 방법론의 상자식별자(Box Classifier)와 Maximum Likelihood 식별기들과 비교했다. 이것은 Fastred-Lightgreen으로 염색된 전립선암이 조직에서 얻은 영상을 통해 비교를 했을 경우에 잘 나타난다. 학습 데이터를 통해 나타난 이 새로운 방법론은 97.5%의 정확한 식별성으로 또한 검증된 최상의 방법론중의 하나이다. 이 결과들이 더 많은 영상에 사용된다면, 이 방법론은 칼라와 텍스쳐가 분할에 관련됨으로써 보다 정확한 영상을 분할하기 위한 효율적인 도구가 될 것이다.

  • PDF

초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할 (3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator)

  • 정말남;곽종인;김상현;김남철
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

영상 분할을 위한 HOG 가이드 필터를 적용한 엣지 보존 기술 (Edge Preserving using HOG Guide Filter for Image Segmentation)

  • 오영진;강행봉
    • 한국멀티미디어학회논문지
    • /
    • 제18권10호
    • /
    • pp.1164-1171
    • /
    • 2015
  • The edge preserving method is important for image storage and geometric transformation. In this paper, we propose a new edge preserving method using HOG-Guide filter for image segmentation. In our approach, we extract edge information using gradient histogram to set HOG guide line. Then, we use HOG guide line to smooth image. With two to four iterations of smoothing operations, we finally obtain desirable edge preserved image. Our experimental results showed good performances showing that our proposed method is better than other methods.

Adaptive Active Contour Model: a Localized Mutual Information Approach for Medical Image Segmentation

  • Dai, Shuanglu;Zhan, Shu;Song, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1840-1855
    • /
    • 2015
  • Troubles are often met when traditional active contours extract boundaries of medical images with inhomogeneous bias and various noises. Focusing on such a circumstance, a localized mutual information active contour model is discussed in the paper. By defining neighborhood of each point on the level set, mutual information is introduced to describe the relationship between the zero level set and image field. A driving energy term is then generated by integrating all the information. In addition, an expanding energy and internal energy are designed to regularize the driving energy. Contrary to piecewise constant model, new model has a better command of driving the contours without initialization.

디지털 마모그램에서 Mass형 유방암 분할을 위한 초기 위치 자동 검출 (Automatic Detection of Initial Positions for Mass Segmentation in Digital Mammograms)

  • 이봉렬;이명진
    • 한국멀티미디어학회논문지
    • /
    • 제13권5호
    • /
    • pp.702-709
    • /
    • 2010
  • Mass형 종양 분할의 성능은 mass의 초기 위치에 큰 영향을 받는다. 따라서 몇몇의 논문들은 방사선 전문의로부터 획득한 mass의 초기 위치를 이용하여 종양의 분할을 진행하였다. 그러나, 본 논문은 mass 검출을 위한 부가정보 없이 디지털 마모그램만을 이용한 컴퓨터 지원 진단 시스템을 구성하여 방사선 전문의에게 mass로 추정되는 곳의 위치를 제시함을 목표로 한다. 제안된 시스템은 영역 확장 기법과 열림 연산을 통한 유방 영역 분할, 분할된 유방영역에서 mass 특성을 갖는 위치의 시드 설정, 설정된 시드 기반 레벨 셋을 통한 mass 영역 분할로 구성된다. Mass 분할을 위한 시드 설정은 부표본화된 유방영상에 대해 블록기반 분산 정보와 마스킹 정보를 이용하는 Mass Scoring Measure(MSM) system을 통하여 수행되었다. 테스트에 사용된 이미지는 DDSM 데이터베이스를 사용하였으며, 실험 결과 종양검출의 정확도는 4 FP/image에서 78%의 민감도를 나타내었고, 상하방향(CC)과 내외사방향(MLO) 이미지를 동시 고려시 92%의 민감도를 보였다.