International Journal of Computer Science & Network Security
/
제22권7호
/
pp.283-293
/
2022
One of the important areas of state policy in the socio-economic and cultural development of the country is cultural diplomacy. It contributes to the information dissemination about the country, strengthens interstate relations, and forms a positive image. Through cultural diplomacy, we achieve a positive perception of the world community of the country, determined by its place in the modern system of international relations. The aim of the study is a comparative analysis of cultural diplomacy opportunities for sustainable development at different levels of public relations, as well as the impact of cultural diplomacy opportunities on the indicators of the Global Sustainable Competitiveness Index and the Global Sustainable Development Index. Regarding the results of the research on the impact of cultural diplomacy opportunities on the indicators of the Global Index of Sustainable Competitiveness and the Global Index of Sustainable Development, four groups are identified among the countries of the European Union: countries with a very high level of sustainable competitiveness and sustainable development; countries with a high level of sustainable competitiveness and sustainable development; countries with low levels of sustainable competitiveness and sustainable development.
International Journal of Computer Science & Network Security
/
제24권3호
/
pp.93-100
/
2024
In this paper, we propose a novel robust blind crypto-watermarking method for medical images security based on hiding of DICOM patient information (patient name, age...) in the medical imaging. The DICOM patient information is encrypted using the AES standard algorithm before its insertion in the medical image. The cover image is divided in blocks of 8x8, in each we insert 1-bit of the encrypted watermark in the hybrid transform domain by applying respectively the 2D-LWT (Lifting wavelet transforms), the 2D-DCT (discrete cosine transforms), and the SVD (singular value decomposition). The scheme is tested by applying various attacks such as noise, filtering and compression. Experimental results show that no visible difference between the watermarked images and the original images and the test against attack shows the good robustness of the proposed algorithm.
Recently, as the demand for physical security technology to prevent leakage of technical and business information of companies and public institutions increases, the high tech companies are operating X-ray security checkpoints at building entrances to protect their intellectual property and technology. X-ray security checkpoints are operated to detect cameras and storage media that may store or leak important technologies in the bags of people entering and leaving the building. In this study, we propose an X-ray security checkpoint system that automatically detects a storage medium in an X-ray image using a deep learning based object detection method. The proposed system consists of an edge computing unit and a cloud-computing unit. We employ the RetinaNet for automatic storage media detection in the X-ray security checkpoint images. The proposed approach achieved mAP of 95.92% on private dataset.
본 논문에서는 이진 이미지 기반의 간단하고 사용자 친화적인 (n,n) 시각 비밀 분산 방법을 제안한다. 제안한 방법은 간단한 XOR 연산과 NOT 연산만을 이용하여 사용자 친화적인 이미지들 내에 숨기고자 하는 비밀 이미지 정보를 분산해서 숨기는 기법으로, 효율적인 숨김(em-bedding)과 복원(reconstruction) 알고리즘 제공, 비밀 이미지의 손실없는 완벽한 복원 기능 제공, 사용자 친화적인 의미있는 이미지들을 공유함으로써 자신이 속해있는 그룹을 쉽게 구분할 수 있는 기능 제공, 그리고 기존의 방법과 달리 원본 커버 이미지와 같은 크기의 비밀 이미지를 공유할 수 있는 등의 시각 비밀 분산 방법이 갖추어야하는 많은 장점들을 가진다.
Munshi, Amani;Alshehri, Asma;Alharbi, Bayan;AlGhamdi, Eman;Banajjar, Esraa;Albogami, Meznah;Alshanbari, Hanan S.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.275-280
/
2021
With the development of communication networks, the processes of exchanging and transmitting information rapidly developed. As millions of images are sent via social media every day, also wireless sensor networks are now used in all applications to capture images such as those used in traffic lights, roads and malls. Therefore, there is a need to reduce the size of these images while maintaining an acceptable degree of quality. In this paper, we use Python software to apply K-mean Clustering algorithm to compress RGB images. The PSNR, MSE, and SSIM are utilized to measure the image quality after image compression. The results of compression reduced the image size to nearly half the size of the original images using k = 64. In the SSIM measure, the higher the K, the greater the similarity between the two images which is a good indicator to a significant reduction in image size. Our proposed compression technique powered by the K-Mean clustering algorithm is useful for compressing images and reducing the size of images.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.303-316
/
2021
Digital content protection has recently become an important requirement in biometrics-based authentication systems due to the challenges involved in designing a feasible and effective user authentication method. Biometric approaches are more effective than traditional methods, and simultaneously, they cannot be considered entirely reliable. This study develops a reliable and trustworthy method for verifying that the owner of the biometric traits is the actual user and not an impostor. Watermarking-based approaches are developed using a combination of a color face image of the user and a mobile equipment identifier (MEID). Employing watermark techniques that cannot be easily removed or destroyed, a blind image watermarking scheme based on fast discrete curvelet transform (FDCuT) and discrete cosine transform (DCT) is proposed. FDCuT is applied to the color face image to obtain various frequency coefficients of the image curvelet decomposition, and for high frequency curvelet coefficients DCT is applied to obtain various frequency coefficients. Furthermore, mid-band frequency coefficients are modified using two uncorrelated noise sequences with the MEID watermark bits to obtain a watermarked image. An analysis is carried out to verify the performance of the proposed schema using conventional performance metrics. Compared with an existing approach, the proposed approach is better able to protect multimedia data from unauthorized access and will effectively prevent anyone other than the actual user from using the identity or images.
기계학습 이미지 인식 기술의 발전에 따라 이를 악성코드 검출에 적용하는 방법이 연구되고 있다. 그 대표적인 접근법으로 악성코드 파일을 이미지로 변환하고 이를 CNN과 같은 딥러닝 네트워크에 학습시켜 악성코드 검출과 분류를 수행하는 연구가 진행되어 의미 있는 결과가 발표되고 있다. 본 연구에서는 기계학습을 사용한 악성코드 검출에 효과적인 이미지 생성방법을 제시하고자 한다. 이를 위하여 이미지 생성의 여러 선택 요소에 따른 악성코드 검출의 성능을 실험하고 분석하였으며, 그 결과를 반영하여 명령어 흐름의 특성을 좀 더 명확하게 나타낼 수 있는 선형적 이미지 생성방법을 제시하고 이 방법이 악성코드 검출의 정밀도를 높일 수 있음을 실험을 통하여 보였다.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.93-98
/
2023
Instagram is one of the fastest-growing online photo social web services where users share their life images and videos with other users. Image tagging is an essential step for developing Automatic Image Annotation (AIA) methods that are based on the learning by example paradigm. Hashtags can be used on just about any social media platform, but they're most popular on Twitter and Instagram. Using hashtags is essentially a way to group together conversations or content around a certain topic, making it easy for people to find content that interests them. Practically on average, 20% of the Instagram hashtags are related to the actual visual content of the image they accompany, i.e., they are descriptive hashtags, while there are many irrelevant hashtags, i.e., stophashtags, that are used across totally different images just for gathering clicks and for search ability enhancement. Hence in this work, Sorting instagram hashtags all the way through mass tagging using HITS (Hyperlink-Induced Topic Search) algorithm is presented. The hashtags can sorted to several groups according to Jensen-Shannon divergence between any two hashtags. This approach provides an effective and consistent way for finding pairs of Instagram images and hashtags, which lead to representative and noise-free training sets for content-based image retrieval. The HITS algorithm is first used to rank the annotators in terms of their effectiveness in the crowd tagging task and then to identify the right hashtags per image.
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.143-147
/
2024
Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.
International Journal of Computer Science & Network Security
/
제23권3호
/
pp.1-9
/
2023
The practical courses are considered as a model for the courses taught by the student of the Department of Physical Education at different levels of study, during which he employs his mental, physical and skill abilities to understand and master the motor skills and develop his physical abilities to be able to master them and later teach and train them, so this study was conducted with the aim of identifying the perceived mental image For the practical courses of the students of the Department of Physical Education at Umm Al-Qura University, by designing a scale for the perceived mental image of the practical courses, and identifying the percentages and the extent of their prevalence for each of the positive mental image, the nonperceived mental image, and the negative mental image of the practical courses among the students of the Department of Physical Education at Umm Al-Qura University, The researcher used the descriptive approach from the survey studies by designing a measure of the perceived mental image on a sample of (175) students, and they were chosen by the intentional method from the fourth level students who studied all the practical courses in the department, whether for the first or second semester of the academic year 2021 /2022. Data using frequencies, percentages and the test of significance of the ratio, and one of the most important results was the validity of the scale used in measuring the mental image perceived by students of the Department of Physical Education about practical courses. Realizing a positive mental image that is statistically significant about the practical courses of (53.20%) of the students of the Department of Physical Education, the sample of this study. And realizing a positive mental image that is statistically significant for students about the axes of the nature of studying practical courses, their abilities in practical performance, the method of implementing lectures, the lecturer, and their evaluation methods. The mental image of the student, and taking appropriate measures to develop the practical courses and academic programs, applying similar studies to measure the mental image of the department's graduates on the specialized tracks in the Department of Physical Education, reviewing the number of hours for some practical courses so that they are not less than two hours for all practical courses.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.