• Title/Summary/Keyword: Image Processing Technology

Search Result 2,335, Processing Time 0.036 seconds

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

The development of CAI systems for an efficient education of image processing (효율적인 영상처리 교육을 위한 통합 환경 개발에 관한 연구)

  • 이정헌;안용학;채옥삼
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.127-135
    • /
    • 2004
  • With the wide-spread use of multimedia technology, the demand for the image processing engineer is increasing in various fields. But there are few engineers who can develop practical applications in the image processing area. To teach practical image processing techniques, we need an integrated education environment which can efficiently present the image processing theory and, at the same time, provide interactive experiments for the theory presented. In this paper, we propose an integrated education environment for the image processing, which is called MTES. It consists of the theory presentation systems and the experiment systems. The theory presentation systems support multimedia data, web document and Microsoft Powerpoint$^{TM}$ file. It is tightly integrated with the experiment systems which are developed based on the integrated image processing algorithm development system, called Hello-Vision.n.

Estimation of Local Strain Distribution of Shear-Compressive Failure Type Beam Using Digital Image Processing Technology (화상계측기법에 의한 전단압축파괴형 보의 국부변형률분포 추정)

  • Kwon, Yong-Gil;Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The failure behavior of RC structure was exceedingly affected by the size and the local strain distribution of the failure zone due to the strain localization behavior on the tension softening materials. However, it is very difficult to quantify and assess the local strain occurring in the failure zone by the conventional test method. In this study, image processing technology, which is available to measure the strain up to the complete failure of RC structures, was used to estimate the local strain distribution and the size of failure zone. In order to verify the reliability and validity for the image processing technology, the strain transition acquired by the image processing technology was compared with strain values measured by the concrete gauge on the uniaxial compressive specimens. Based on the verification of image processing technology for the uniaxial compressive specimens, the size and the local strain distribution of the failure zone of deep beam was measured using the image processing technology. With the results of test, the principal tensile/compressive strain contours were drawn. Using the strain contours, the size of the failure zone and the local strain distribution on the failure of the deep beam was evaluated. The results of strain contour showed that image processing technology is available to assess the failure behavior of deep beam and obtain the local strain values on the domain of the post-peak failure comparatively.

Basic Study on the Measurement of Unit Productivity Data By Image Processing Technology (이미지 프로세싱을 활용한 생산성 정보 측정방안에 관한 연구)

  • Lee, Chan-Kyu;Lee, Seung-Hyun;Son, Jae-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.281-282
    • /
    • 2012
  • Construction performance and productivity improvement are key focus areas in construction industry for any nation. There have been frequent delays and cost overruns in construction projects and poor productivity is one of the major contributions. For this reasons, there have been many research studies performed on the improvement of construction productivity for several decades. However, measuring productivity on a construction job site is still not an easy work. Because collecting reliable data consistently from the job site requires a lot of personnel efforts causing extra time and cost. This paper provides a basic study on the application of image processing technology for measuring unit productivity. It presented the possibility of unit productivity measurement by image processing technology through case study.

  • PDF

A Study on the Design and Development of Automatic Optical Fiber Aligner (자동 광섬유 정렬 장치의 설계 및 제작에 관한 연구)

  • Kim, Byung-Hee;Uhm, Chul;Choi, Young-Suk
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.241-249
    • /
    • 2002
  • Optical fiber is indispensable for optical communication systems that transmit large volumes of data at high speed, but super precision technology in sub-micron units is required for optical axis adjustment. We developed the automatic optical fiber by image processing and automatic loading system. we have developed 6-axis micro stage system for I/O optical fiber arrays, the initial automatic aligning system software for a input optical array by the image processing technique, fast I/O-synchronous aligning strategy, the automatic loading/unloading system and the automatic UV bonding mechanism. In order to adjust the alignment it used on PC based motion controller, a $10{\mu}m$ repeat-detailed drawing of automatic loading system is developed by a primary line up for high detailed drawing. Also, at this researches used the image processing system and algorithm instead of the existing a primary hand-line up and fiber input array and waveguide chip formed in line by automatic.

  • PDF

System Design for High-speed Visual Inspection of Electronic Components (전자부품의 고속 외관검사를 위한 시스템 설계)

  • Yoo, Seungryeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.39-44
    • /
    • 2012
  • Electronics in modern lives have become more miniaturized and precise. Multi Layered Ceramic Capacitor (MLCC) occupies 50% of electronic components consisting of electronics. This high volume of the production needs high speed and more precise machine performances. The dominate parts of the production equipments are the module transporting components and the visual inspection module. Most visual inspection has been off-line because of the image processing time. In this paper, a new image processing method is proposed to reduce thousands of matrix calculation for image processing and realize on-line high speed inspection.

A Study on Inspection Technology of Thermal Battery Electrolyte using Image Processing Method (영상처리 방법을 통한 열전지 전해질 검사기법 연구)

  • Ha, Sang-Hyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.820-826
    • /
    • 2012
  • For the development of reliable thermal batteries, electrolyte is quite important because it is closely related to the performance and stability of thermal batteries. This paper describes general image processing method used for the inspection of molten-salt based electrolyte disk and also describes how we can apply this image processing method to the inspection of thermal battery electrolyte. Moreover we have found optimized image processing conditions to improve the discriminating ability of compaction defects such as non-uniform parts in an electrolyte.

A fast high-resolution vibration measurement method based on vision technology for structures

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Chae, Gyung-Sun;Park, Jae-Seok;Kim, Se-Oh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.294-303
    • /
    • 2021
  • Various types of sensors are used at industrial sites to measure vibration. With the increase in the diversity of vibration measurement methods, vibration monitoring methods using camera equipment have recently been introduced. However, owing to the physical limitations of the hardware, the measurement resolution is lower than that of conventional sensors, and real-time processing is difficult because of extensive image processing. As a result, most such methods in practice only monitor status trends. To address these disadvantages, a high-resolution vibration measurement method using image analysis of the edge region of the structure has been reported. While this method exhibits higher resolution than the existing vibration measurement technique using a camera, it requires significant amount of computation. In this study, a method is proposed for rapidly processing considerable amount of image data acquired from vision equipment, and measuring the vibration of structures with high resolution. The method is then verified through experiments. It was shown that the proposed method can fast measure vibrations of structures remotely.

A Study on Cantilever Deformation Inspection Method Using Image Processing (영상처리를 이용한 가동브래킷 변형 검사 기법에 대한 연구)

  • Han, Seung-Hun;Cho, Min-Soo;Yu, Young-Ki;Lee, Byeong-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.988-994
    • /
    • 2017
  • The risk of facilities in catenary is increasing because the railway section extension and high-speed train service. And visual check of workforce is not enough time to maintain the extensive railway facilities. Accordingly, The technical development trend of maintenance of railway facilities can be seen by automation and application of IT technology, especially the mechanization work and the information technology are spreading in the maintenance work of the train line solved by manpower. In this paper, we describe the method by obtaining the cantilever image using acquisition device and pole inspection system in high speed vehicle, to check the variation of the cantilever component using image processing.

FAST Design for Large-Scale Satellite Image Processing (대용량 위성영상 처리를 위한 FAST 시스템 설계)

  • Lee, Youngrim;Park, Wanyong;Park, Hyunchun;Shin, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.