• 제목/요약/키워드: Image Object

검색결과 4,233건 처리시간 0.036초

Consecutive-Frame Super-Resolution considering Moving Object Region

  • Cho, Sung Min;Jeong, Woo Jin;Jang, Kyung Hyun;Choi, Byung In;Moon, Young Shik
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose a consecutive-frame super-resolution method to tackle a moving object problem. The super-resolution is a method restoring a high resolution image from a low resolution image. The super-resolution is classified into two types, briefly, single-frame super-resolution and consecutive-frame super-resolution. Typically, the consecutive-frame super-resolution recovers a better than the single-frame super-resolution, because it use more information from consecutive frames. However, the consecutive-frame super-resolution failed to recover the moving object. Therefore, we proposed an improved method via moving object detection. Experimental results showed that the proposed method restored both the moving object and the background properly.

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

물체지향 분석 및 합성 부호화에서 가산 투영을 이용한 영상분석기법 (An image Analysis Technique Using Integral Projections in Object-Oriented Analysis-Synthesis Coding)

  • 김준석;박래홍
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.87-98
    • /
    • 1994
  • Object-oriented analysis-synthesis coding subdivides each image of a sequence into moving objects and compensates the motion of each object. Thus it can reconstruct real motion better than conventional motion-compensated coding techniques at very-low-bit-rates. It uses a mapping parameter technique for estimating motion information of each object. Since a mapping parameter technique uses gradient operators it is sensitive to redundant details and noise. To accurately determine mapping parameters, we propose a new analysis method using integral projections for estimation of gradient values. Also to reconstruct correctly the local motion the proposed algorithm divides an image into segmented objects each of which having uniform motion information while the conventional one assumes a large object having the same motion information. Computer simulation results with several test sequences show that the proposed image analysis method in object-oriented analysis-synthesis coding shows better performance than the conventional one.

  • PDF

객체 분리 및 인코딩을 이용한 애완동물 영상 세부 분류 인식 (Fine grained recognition of breed of animal from image using object segmentation and image encoding)

  • 김지혜
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.536-537
    • /
    • 2018
  • 본 논문은 개와 고양이에 해당하는 애완동물 영상에서 세부 분류인 동물의 종을 인식하는 것을 목표로 한다. 영상의 세부 분류 인식에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문에서는 객체 분리를 위해 Grab-cut 알고리즘을 이용하고, 영상 인코딩을 위해 Fisher Vector를 이용하여 더 높은 동물 객체인식 방법을 제안한다.

  • PDF

능동 윤곽선 모델을 이용한 이동 물체 윤곽선 추출 (An Extraction of Moving Object Contour Using Active Contour Model)

  • 이상욱;권태하
    • 한국정보통신학회논문지
    • /
    • 제4권1호
    • /
    • pp.123-130
    • /
    • 2000
  • 본 논문은 고정된 카메라에서 얻어진 연속 영상으로부터 능동 윤곽선 모델을 이용하여 이동 물체의 윤곽선을 추출하는 방법을 제안한다. 주위 환경 변화에 강인한 처리를 위해 적응 배경 모델을 사용하였다. 물체 분할 모델은 얻어진 배경 영상과 현재 영상의 차영상으로부터 국부 영상의 임계값 이상의 화소를 찾아 연결한 영역을 분할하며, 형태학적 필터에 의하여 이동 물체의 경계 부분에서 발생하는 잡음을 제거하였다 분할된 이동 물체 윤곽선은 능동 윤곽선 모델을 이용하여 보다 정확한 이동 물체의 경계를 추출한다. 제안한 방법을 사용하여 도로 영상에서 실험한 결과를 보였다.

  • PDF

계층적 각-거리 그래프를 이용한 물체 면적 측정을 위한 디지털 영상처리 알고리즘에 관한 연구 (A Study on Digital Image Processing Algorithm for Area Measurement of an Object Image by the Hierarchical Angle-Distance Graphs)

  • 김웅기;나성웅;이정원
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.83-88
    • /
    • 2006
  • 일정한 형태의 물체를 분석하기 위해 사용되는 각-거리 그래프를 이용하여 임의의 물체의 경계선 내부 영역의 면적을 측정하는 디지털 영상처리 알고리듬을 제안한다. 물체의 경계선 내부의 한 점을 중심으로 1차 각-거리 그래프를 생성하고 이 그래프로부터 거리 값이 급격히 변화하는 위치를 추출하여 1차 그래프에서 접근하지 못한 영역을 인식하여 새 영역에서의 한 점을 중심으로 2차 각-거리 그래프를 생성한다. 물체의 형태가 복잡한 경우 차수가 증가하게 되며 이와 같이 계층적으로 구성된 각-거리 그래프 그룹에 대해 거리의 제곱을 각도 방향으로 적분하여 물체의 경계선 내부 영역의 면적을 측정한다.

초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할 (3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator)

  • 정말남;곽종인;김상현;김남철
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

현대 패션쇼에 나타나는 인형과 인형이미지의 내적 의미 (The Internal Meanings of Dolls and Dolls' Images Expressed in Modern Fashion Show)

  • 유주연;권기영
    • Human Ecology Research
    • /
    • 제52권1호
    • /
    • pp.33-42
    • /
    • 2014
  • The purpose of this study is to analyze the internal meanings of dolls and dolls' images expressed in modern fashion show. Dolls are used as sacred object, decoration object, playing object, personified object or cherished object. The expression types of doll image in modern fashion are as following; substitutes of multi-ego, object of sexual desire, objectified creature, and medium of transcending fantasy. First, dolls image as substitutes of multi-ego had been expressed in magical expression, disgusting mask, transparent mannequin, expressionless, horror, conflict, loss of identity, exaggeration or escapism. Second, as object of sexual desire, dolls image are expressed as naked baby, ambiguous expression, naked body, voluminous body, emphasized specific bodypart, heavy makeup or wax doll of sexy actresses. Third, as objectified creature, dolls are human body in passive form. Human bodies are disassembled and reassembled as dolls. Such dolls reflect serious reality. They wrap up human like product and objectify it. Fourth, dolls image expressed as medium of transcending fantasy recollects youth age or expresses imagination on ambiguous virtual reality. Like this, dolls have value as creatures in various fields of modern fashion. Dolls contribute a lot in creating important inspiration. Dolls also expose internal mentality and represent ego. Externally, dolls express human shape becoming more and more materialized and objectified by advancing scientific technology in digital capitalistic society.

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • 방송공학회논문지
    • /
    • 제25권7호
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF