• 제목/요약/키워드: Image Object

검색결과 4,233건 처리시간 0.038초

우주탐사에서의 가시광-근적외선 분광 자료 분석 기법 (Analysis Methods of Visible and Near-Infrared (VNIR) Spectrum Data in Space Exploration)

  • 이응석;김경자;홍익선;김수연
    • 우주기술과 응용
    • /
    • 제3권2호
    • /
    • pp.154-164
    • /
    • 2023
  • 우주탐사에서 분광관측은 대상의 구성 성분과 물리적 특성을 이해하는 데 유용한 방법이다. 분광 자료 분석에는 여러 가지 방법이 있으며, 관측 대상과 파장대역에 따라 차이가 있다. 본 논문에서는 달 탐사에서 주로 적용하는 가시광-근적외선(visible & near-infrared, VNIR) 분광 자료 분석 방법에 대해 소개한다. 주요 분석 방법에는 가색상 비율(false color ratio) 영상 처리, 반사도 유형(reflectance pattern) 분석, 통합 대역 깊이(integrated band depth, IBD) 계산이 있으며, 분석 이전의 전처리로는 연속체 제거(continuum removal)가 있다. 이러한 분광 분석 방법들은 가시광-근적외선 영역에서 나타나는 달 표면의 광물 특성을 이해하는데 도움이 되며, 화성과 같은 다른 천체에도 적용할 수 있다.

IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원 (3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas)

  • 이석군;박정환
    • 대한토목학회논문집
    • /
    • 제26권3D호
    • /
    • pp.535-540
    • /
    • 2006
  • 본 논문에서는 고해상도 컬러 입체영상을 활용하여 도심지역의 3차원 건물정보를 효율적으로 복원하기 위한 일련의 처리방법을 제안하고자 한다. 본 연구에서 제안된 방법은 BDT 기법을 활용한 건물 추출, Hausdorff 거리와 컬러인덱싱 기법을 활용한 영상정합, 마지막으로 사진측량기법을 활용한 건물복원 등의 3단계의 처리과정을 포함하고 있다. 제안된 알고리즘의 실험은 고해상도 위성영상의 대표격인 IKONOS 컬러 입체영상을 대상으로 수행되었으며, 실험을 통해 건물추출에 있어서 영상의 배경부분과 건물부분의 밝기값의 분산을 증가시키는 BDT 기법이 건물추출에 우수함을 확인할 수 있었다. 또한, 2가지 건물인식기법을 활용한 영상정합 과정에 있어서도 컬러정보와 경계정보를 모두 사용할 경우 대부분의 추출건물들을 자동인식하고 이를 초기위치로 원활한 영상정합이 수행될 수 있음을 확인하였다. 최종적으로 실험지역에 대한 3차원 건물정보는 전방 다항식비례모형을 통해 획득되었으며 기준자료와의 비교를 통해 정확도 분석을 수행하였다.

노천광산의 월경 채굴 조기경보 모니터링시스템의 설계 및 구현 (Design and Implementation of Early Warning Monitoring System for Cross-border Mining in Open-pit Mines)

  • 이크;민병원
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.25-41
    • /
    • 2024
  • 노천 광산 채굴 시나리오와 관련하여 현재 중국에서는 주요 수동 및 정기 검사를 위한 비디오 모니터링을 사용하는 것으로 인건비를 지속적으로 투자해야 하며 적시성이 낮다. 이 조기경보 모니터링의 문제를 해결하기 위해 이 글에서는 공간화 알고리즘 모델을 개발하여 노천광산의 월경채굴 조기경보시스템을 설계하고 광산채굴장비의 지리적 정보를 산출하고 실시간으로 광산 승인 범위의 레이어 좌표와 비교하고, 자동으로 광산의 월경 채굴 행동을 예측한다. 장시 핑샹 지역을 연구 대상으로 하여 노천 광산 채굴 엔지니어링 기계 장비를 식별 및 추적 대상으로 선정하였으며, 현장 실험을 통해 시스템이 안정적이고 신뢰할 수 있으며 검증 시스템의 목표 추적 정확도가 높은 것으로 나타났으며, 광산 채굴 감독의 적시성과 정확성을 향상시킬 수 있고 감독의 인건비를 크게 절감할 수 있다.

Copper Filter Dryer 품질보증을 위한 결함 검출 및 원인 분석 (Defect Detection and Cause Analysis for Copper Filter Dryer Quality Assurance)

  • 오석민;박진제;다어반권;장병호;김흥재;김창순
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.107-116
    • /
    • 2024
  • Copper Filter Dryer(CFD)는 냉동 및 냉방 시스템에서 냉매의 순환 시 불순물을 제거하여 깨끗한 냉매를 유지하는 역할을 하며, CFD의 결함은 냉동 및 냉방 시스템의 누수, 수명 저하 등 제품의 결함으로 이어질 수 있어 품질보증이 필수적이다. 기존에는 품질 검사 단계에서 작업자가 검사하고 결함을 판단하는 방법이 주로 사용되었으나, 이러한 방법은 주관적으로 판단하기 때문에 정확하지 못하다. 본 논문에서는 CFD 축관 및 용접 공정 과정에서 발생하는 결함을 검출하고 기존의 품질 검사를 대체하기 위해 YOLOv7 객체 감지 알고리즘을 사용하여 결함을 검출했고, F1-Score 0.954, 0.895의 검출 성능을 확인하였다. 또한, 결함 이미지의 Timestamp에 해당하는 센서 데이터 분석을 통해 용접 과정 중 발생하는 결함의 원인을 분석하였다. 본 논문은 CFD 공정 중 발생하는 결함을 검출하고 원인을 분석함으로써 제조 품질보증과 개선 방안을 제시한다.

보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구 (A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection)

  • 조성윤;윤여환
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.197-205
    • /
    • 2024
  • 자율주행 자동차 개발 및 상용화에 있어서 주행안전도 확보가 가장 중요한 시점에서 이를 위해 전방 및 주행차량 주변에 존재하는 다양한 정적/동적 차량의 인식과 검출 성능을 고도화 및 최적화하기 위한 AI, 빅데이터 기반 알고리즘개발 등이 연구되고 있다. 하지만 레이더와 카메라의 고유한 장점을 활용하여 동일한 차량으로 인식하기 위한 연구 사례들이 많이 있지만, 딥러닝 영상 처리 기술을 이용하지 않거나, 레이더의 성능상의 문제로 짧은 거리만 동일한 표적으로 감지하고 있다. 따라서 레이더 장비와 카메라 장비에서 수집할 수 있는 데이터셋을 구성하고, 데이터셋의 오차를 계산하여 동일한 표적으로 인식하는 융합 기반 차량 인식 방법이 필요하다. 본 논문에서는 레이더와 CCTV(영상) 설치 위치에 따라 동일한 객체로 판단하기에 데이터 오차가 발생하기 때문에 설치한 위치에 따라 위치 정보를 연동할 수 있는 기술 개발을 목표로 한다.

스테레오 영상에서 폐색에 강인하고 축소된 파라미터를 갖는 신경망 (Neural network with occlusion-resistant and reduced parameters in stereo images)

  • 이광엽;전영민;정준모
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.65-71
    • /
    • 2024
  • 본 논문은 스테레오 매칭에서 깊이 맵의 정확도를 높이기 위해 폐색 영역의 매칭 오류를 줄이면서 파라메터의 수를 줄일 수 있는 신경망을 제안한다. 이미지를 이용한 상황인식을 보다 정확하게 하기 위해 많은 분야에서 스테레오 매칭기반 객체인식이 활용된다. 복잡한 이미지에 많은 객체가 있을 때 객체간의 겹침과 배경에 의한 가림으로 폐색영역이 발생하여 깊이 맵의 정확도를 낮추게 된다. 이를 해결하기 위해 context 정보를 만들어 cost volume에 결합하거나 폐색영역에 RoI를 만들어 선택하는 기존 연구 방법은 신경망의 복잡도를 높여서 학습의 어려움과 구현에 비용이 많이 들게 된다. 본 논문에서는 cost volume 생성전에 지역적인 특징추출을 보다 강화하는 depthwise seperable 신경망을 만들어 파라메터의 수를 줄이고 폐색 오류에 강인한 신경망을 제안한다. 제안한 신경망은 PSMNet에 비하여 파라메터 수를 30% 줄이면서 페색오류에서 5.3%, 테스트 손실에서 3.6% 개선하였다.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Training Dataset Generation through Generative AI for Multi-Modal Safety Monitoring in Construction

  • Insoo Jeong;Junghoon Kim;Seungmo Lim;Jeongbin Hwang;Seokho Chi
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.455-462
    • /
    • 2024
  • In the construction industry, known for its dynamic and hazardous environments, there exists a crucial demand for effective safety incident prevention. Traditional approaches to monitoring on-site safety, despite their importance, suffer from being laborious and heavily reliant on subjective, paper-based reports, which results in inefficiencies and fragmented data. Additionally, the incorporation of computer vision technologies for automated safety monitoring encounters a significant obstacle due to the lack of suitable training datasets. This challenge is due to the rare availability of safety accident images or videos and concerns over security and privacy violations. Consequently, this paper explores an innovative method to address the shortage of safety-related datasets in the construction sector by employing generative artificial intelligence (AI), specifically focusing on the Stable Diffusion model. Utilizing real-world construction accident scenarios, this method aims to generate photorealistic images to enrich training datasets for safety surveillance applications using computer vision. By systematically generating accident prompts, employing static prompts in empirical experiments, and compiling datasets with Stable Diffusion, this research bypasses the constraints of conventional data collection techniques in construction safety. The diversity and realism of the produced images hold considerable promise for tasks such as object detection and action recognition, thus improving safety measures. This study proposes future avenues for broadening scenario coverage, refining the prompt generation process, and merging artificial datasets with machine learning models for superior safety monitoring.

딥러닝 기반 터널 영상유고감지 시스템 개발 연구 (Development of a deep-learning based tunnel incident detection system on CCTVs)

  • 신휴성;이규범;임민진;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.915-936
    • /
    • 2017
  • 본 논문에서는 2016년을 기준으로 강화된 터널 방재시설 설치 및 관리지침과, 점차 강화되고 있는 터널 CCTV설치 터널등급 기준과 터널 영상유고감지 시스템의 설치 운용에 대한 요구의 증가 상황을 정리해 보고하였다. 그럼에도, 가동중인 알고리즘 기반의 터널 영상유고감시 시스템의 정상 인지율은 50%가 채 되지 않는 것으로 파악되었으며, 그에 대한 주원인은 터널 내 낮은 조도, 심한 먼지로 인한 영상 선명도 저하, 낮은 CCTV 설치위치로 인한 이동객체의 겹침현상 등으로 파악되었다. 따라서, 본 연구에서는 이러한 열악한 조건에서도 영상유고 정상 인지율을 확보할 수 있는 딥러닝 기반 영상유고감지 시스템을 개발하였으며, 이에 대한 이론적 배경 제시와 시스템의 타당성 검토 연구가 진행되었다. 개발 시스템의 타당성 검토 연구는 터널 방재시설 및 관리지침 내 영상유고감지 항목중 정지 및 역주행 차량을 감지하는 주요 정보인 차량 객체 인식과 보행자 감지를 중심으로 진행되었다. 또한, (1) 동일 터널 내에서 학습과 추론이 이루어 지는 경우와 (2) 다양한 터널의 영상 정보를 통합 학습하고, 각 터널의 영상유고감지에 투입되는 경우, 두개의 시나리오를 설정하여 타당성 검토를 진행하였다. 두 시나리오 모두 일정 시간의 학습 자료와 유사한 상황에 대해서는 열악한 터널환경과 무관하게 그 감지성능이 80% 이상으로 우수하나, 추가 학습 없이 학습된 시간 구간과 멀어질수록 그 추론 성능은 상대적으로 낮은 40% 수준으로 떨어짐을 알 수 있었다. 그러나, 시간이 지남에 따라 자동으로 누적되어 확장되는 영상유고 빅데이터를 반복적으로 학습함으로써, 설치된 영상유고감지 시스템의 보완이나 보정절차 없이도 자동으로 그 영상유고감지 성능이 향상될 수 있음을 보였다.

초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구 (A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography)

  • 조재완;서용칠;정승호;정현규;김승호
    • 비파괴검사학회지
    • /
    • 제26권4호
    • /
    • pp.211-219
    • /
    • 2006
  • 초음파 서모그라피는 초음파 진동 에너지 여기에 의한 물체의 표면 및 표면 아래에 존재하는 결함부위의 선택적 발열 특성을 적외선 열영상 카메라로 관측하는 것이다. 결함(균열, 박리, 공극 등) 이 존재하는 구조물에 초음파 진동 에너지를 입사시킬 경우 결함 부근에서의 국부적인 발열로 인해 건전 부위와의 급격한 온도차를 드러내는 핫 스폿이 관측된다. 초음파 진동 에너지 여기에 의한 핫 스폿 관측 및 분석을 통해 결함을 진단하는 것이 초음파 서모그라피를 이용한 비파괴 결함 진단 방법이다. 이를 이용한 결함 검출을 위해서는 초음파의 진동에너지를 검사 구조물에 효율적으로 전달하는 것이 중요하다 본 논문에서는 초음파 서모그라피를 이용한 실시간 결함검출에 대해 기술한다. 초음파 진동에너지의 입사 방향에 따른 결함 검출 특성을 평가하기 위해 진동에너지의 전달 방향을 시편과 수직 또는 수평방향으로 각각 입사시켰다. 각각의 입사 방향에 따른 초음파 트랜스듀서 양단에 인가되는 전압을 디지털 오실로스코우프로 계측 비교하였다. 결함 검출에 사용한 시편은 14 mm 두께의 SUS 균열(crack) 시편, PCB 기판(1.8 mm), 인코넬 600 판(1.0 mm) 및 CFRP 판(3.0 mm)의 4종류이다. 4종류의 시편에 대해 280ms 펄스폭의 초음파에너지를 수직 수평으로 각각 입사시켰다. 4종류 모두 수직방향으로 초음파 진동에너지를 입사시켰을 때 수평방향에 비해 전달 손실이 적었다. 복합재료인 PCB, CFRP 판은 수직방향으로 초음파 진동에너지를 입사시켰을 때 수평방향에 비해 결함 위치에서 열이 크게 발생하였으며 선택적 발열 현상도 3배 이상 지속되었다. 금속재료인 인코넬 600판과 SUS 시편은 수평방향이 수직방향보다 핫 스폿이 빨리 관측되었다.