A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.
객체 검출 및 인식 과정은 컴퓨터비전 분야에서 매우 중요한 과업으로써, 관련 연구가 활발하게 진행되고 있다. 그러나 실제 객체 인식 과정에서는 학습된 이미지 데이터와 테스트 이미지 데이터간 해상도 차이로 인하여 인식기의 정확도 성능이 저하되는 문제가 종종 발생한다. 이를 해결하기 위해 본 논문에서는 객체 인식 정확도 향상을 위한 이미지 초해상도 기법을 제안하여 객체 인식 및 초해상도 통합 프레임워크를 설계하고 개발하였다. 세부적으로는 11,231장의 차량 번호판 훈련용 이미지를 웹 크롤링, 인조데이터 생성 등을 통해 자체적으로 구축하고, 이를 활용하여 이미지 좌우 반전에 강인하도록 목적함수를 정의하여 이미지 초해상도 인공 신경망을 훈련시켰다. 제안 방법의 성능을 검증하기 위해 훈련된 이미지 초해상도 및 번호 인식기 1,999장의 테스트 이미지에 실험하였고, 이를 통해 제안한 초해상도 기법이 문자 인식 정확도 개선 효과가 있음을 확인하였다.
본 논문에서는 비젼 시스템을 이용하여 이동 물체를 추적하는 방법을 제안하였다. 이동 물체를 계속적으로 추적하기 위해서는 이동 물체의 영상이 화상의 중심점 부근에 위치하도록 해야 한다. 따라서 이동 물체의 영상이 화상의 중심점의 부근에 위치하도록 하기 위하여 팬/틸트(Pan/Tilt)구조의 카메라 모듈을 제어하는 퍼지 제어기를 구현하였다. 향후, 시스템을 이동로봇에 적용하기 위하여 비젼 시스템을 위한 영상처리보드를 설계 제작하였고, 대상물체의 색상과 형태를 파악한 후 퍼지 제어기를 이용하여 카메라모듈이 물체를 추적할 수 있도록 StrongArm 보드를 이용하여 구성하였다. 그리고, 실험에 의해서 제안된 퍼지 제어기 가 실시간 이동물체 추적 시스템에 적용 가능함을 확인 하였다.
In this paper, the visual tracking system for arbitrary shaped moving object is proposed. The established tracking system can be divided into model based method that needs previous model for target object and image based method that uses image feature. In the model based method, the reliable tracking is possible, but simplification of the shape is necessary and the application is restricted to definite target mod el. On the other hand, in the image based method, the process speed can be increased, but the shape information is lost and the tracking system is sensitive to image noise. The proposed tracking system is composed of the extraction process that recognizes the existence of moving object and tracking process that extracts dynamic characteristics and shape information of the target objects. Specially, active contour model is used to effectively track the object that is undergoing shape change. In initializatio n process of the contour model, the semi-automatic operation can be avoided and the convergence speed of the contour can be increased by the proposed effective initialization method. Also, for the efficient solution of the correspondence problem in multiple objects tracking, the variation function that uses the variation of position structure in image frame and snake energy level is proposed. In order to verify the validity and effectiveness of the proposed tracking system, real time tracking experiment for multiple moving objects is implemented.
Ahmad, Muhammad Bilal;Chang, Min-Hyuk;Park, Jong-An
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2003년도 ICCAS
/
pp.1377-1381
/
2003
This paper describes real time object tracking of 3D objects in 2D image sequences. The moving objects are segmented from the image sequence using morphological operations. The moving objects are segmented by the method of differential image followed by the process of morphological dilation. The moving objects are recognized and tracked using statistical moments. The direction of moving objects are determined by the Hough transform. The straight lines in the moving objects are found with the help of Hough transform. The direction of the moving object is calculated from the orientation of the straight lines in the direction of the principal axes of the moving objects. The direction of the moving object and the displacement of the object in the image sequence is used to calculate the velocity of the moving objects. The simulation results of the proposed method are promising on the test images.
Journal of information and communication convergence engineering
/
제2권1호
/
pp.52-57
/
2004
In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region. Each moving object is segmented by image subtraction from the mosaic background. The proposed tracking system has demonstrated good performance for several test video sequences.
Unlike optical equipment, SAR(Synthetic Aperture Radar) has the advantage of obtaining images in all weather, and object detection in SAR images is an important issue. Generally, deep learning-based object detection was mainly performed in real-valued network using only amplitude of SAR image. Since the SAR image is complex data consist of amplitude and phase data, a complex-valued network is required. In this paper, a complex-valued ResNet network is proposed. SAR image object detection was performed by combining the ROI transformer detector specialized for aerial image detection and the proposed complex-valued ResNet. It was confirmed that higher accuracy was obtained in complex-valued network than in existing real-valued network.
본 논문에서는 샴 네트워크 기반의 객체 추적 알고리즘의 성능 향상을 위한 표적 이미지 교환 모델을 제안한다. 샴 네트워크 기반의 객체 추적 알고리즘은 시퀀스의 첫 프레임에서 지정된 표적 이미지만을 사용하여 탐색 이미지 내에서 가장 유사한 부분을 찾아 객체를 추적한다. 첫 프레임의 객체와 유사도를 비교하기 때문에 추적에 한 번 실패하게 되면 오류가 축적되어 추적 객체가 아닌 부분에서 표류하게 되는 현상이 발생한다. 따라서 CNN(Convolutional Neural Network)기반의 모델을 설계하여 추적이 잘 진행되고 있는지 확인하고 샴 네트워크 기반의 객체 추적 알고리즘에서 출력되는 점수를 이용하여 표적 이미지 교환 시기를 정의하였다. 제안 모델은 VOT-2018 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 정확도 0.611 견고도 22.816을 달성하였다.
오늘날 딥러닝 기술의 향상으로 영상 분류, 객체 탐지, 객체 분할, 객체 추적 등 컴퓨터 비전 분야 또한 큰 발전을 이루고 있다. 지능적 감시, 로봇, 사물 인터넷, 자율주행 자동차 등 딥러닝 기술이 결합된 다양한 응용 기술들은 실제 산업에 적용되고 있으며, 이에 따라 사람의 소비를 위한 영상 데이터 뿐만 아니라 머신 비전을 위한 영상 데이터의 효율적인 압축 방식에 대한 필요성이 대두되고 있다. 본 논문에서는 머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법을 제안한다. 효율적인 영상 압축과 신경망의 좋은 성능을 유지하기 위해 본 논문에서는 신경망의 객체 탐지 결과와 객체 크기에 따라 입력 영상을 객체 부분과 배경 부분으로 나누어 서로 다른 압축률로 부호화를 수행하는 방법을 제안한다. 제안하는 방법은 VVC로 영상 전체를 압축하는 방식보다 BD-rate 값이 최대 -19.83%로 압축 효율이 뛰어나다는 것을 확인할 수 있다.
This paper looks at the development of the visual system of robots, and the development of image processing algorism to measure the size of an object and the distance from robot to an object for the visual system. Robots usually get the visual systems with a camera for measuring the size of an object and the distance to an object. The visual systems are accurately impossible the size and distance in case of that the locations of the systems is changed and the objects are not on the ground. Thus, in this paper, we developed robot's visual system to measure the size of an object and the distance to an object using two cameras and two-degree robot mechanism. And, we developed the image processing algorism to measure the size of an object and the distance from robot to an object for the visual system, and finally, carried out the characteristics test of the developed visual system. As a result, it is thought that the developed system could accurately measure the size of an object and the distance to an object.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.