• Title/Summary/Keyword: Image Learning

Search Result 3,175, Processing Time 0.046 seconds

The Educational Effect of the Visualization of Heat Conduction with a Thermal Imaging Camera on Elementary School Students in Small Group Activity - Focusing on the Change of the Mental Model of Why Metal Feels Cold - (열화상 사진기로 열전도 현상을 시각화한 자료가 소집단 활동에서 초등학생에게 미치는 교육적 효과 - 금속이 차갑게 느껴지는 이유에 대한 정신모형 변화를 중심으로 -)

  • Lee, Ga Ram;Ju, Eunjeong;Park, Il-Woo
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.569-591
    • /
    • 2022
  • This study aims to investigate the educational effects of the visualization of heat conduction using a thermal imaging camera on elementary school students through small group activities. It endeavors to explain the reason for why metal feels cold. The scholars conducted in-depth interviews before and after learning the unit "Temperature and Heat" for four students in fifth grade in Seoul. Recorded video and audio materials of the activities, their outputs, and journals of scholars were collected, reviewed, and analyzed. The result demonstrated that visualizing heat conduction using the thermal imaging camera aroused curiosity and provided an opportunity for sophisticated observation and integrated thinking. In addition, the visualization of the heat conduction phenomenon was used as the basis for interpretation and rebuttal for active communication during the small group activities of the students. Consequently, the students changed their non-scientific beliefs, refined their knowledge, and developed their mental models through a small group discussion based on a thermal image video.

Comparative study of data augmentation methods for fake audio detection (음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구)

  • KwanYeol Park;Il-Youp Kwak
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • The data augmentation technique is effectively used to solve the problem of overfitting the model by allowing the training dataset to be viewed from various perspectives. In addition to image augmentation techniques such as rotation, cropping, horizontal flip, and vertical flip, occlusion-based data augmentation methods such as Cutmix and Cutout have been proposed. For models based on speech data, it is possible to use an occlusion-based data-based augmentation technique after converting a 1D speech signal into a 2D spectrogram. In particular, SpecAugment is an occlusion-based augmentation technique for speech spectrograms. In this study, we intend to compare and study data augmentation techniques that can be used in the problem of false-voice detection. Using data from the ASVspoof2017 and ASVspoof2019 competitions held to detect fake audio, a dataset applied with Cutout, Cutmix, and SpecAugment, an occlusion-based data augmentation method, was trained through an LCNN model. All three augmentation techniques, Cutout, Cutmix, and SpecAugment, generally improved the performance of the model. In ASVspoof2017, Cutmix, in ASVspoof2019 LA, Mixup, and in ASVspoof2019 PA, SpecAugment showed the best performance. In addition, increasing the number of masks for SpecAugment helps to improve performance. In conclusion, it is understood that the appropriate augmentation technique differs depending on the situation and data.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Threat Situation Determination System Through AWS-Based Behavior and Object Recognition (AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템)

  • Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.

A Study on MRD Methods of A RAM-based Neural Net (RAM 기반 신경망의 MRD 기법에 관한 연구)

  • Lee, Dong-Hyung;Kim, Seong-Jin;Park, Sang-Moo;Lee, Soo-Dong;Ock, Cheol-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.11-19
    • /
    • 2009
  • A RAM-based Neural Net(RBNN) which has multi-discriminators is more effective than RBNN with a discriminator. Experience Sensitive Cumulative Neural Network and 3-D Neuro System(3DNS) that accumulate the features point improved the performance of BNN, which were enabled to train additional and repeated patterns and extract a generalized pattern. In recognition process of Neural Net with multi-discriminator, the selection of class was decided by the value of MRD which calculates the accumulated sum of each class. But they had a saturation problem of its memory cells caused by learning volume increment. Therefore, the decision of MRD has a low performance because recognition rate is decreased by saturation. In this paper, we propose the method which improve the MRD ability. The method consists of the optimum MRD and the matching ratio prototype to generalized image, the cumulative filter ratio, the gap of prototype response MRD. We experimented the performance using NIST database of NIST without preprocessor, and compared this model with 3DNS. The proposed MRD method has more performance of recognition rate and more stable system for distortion of input pattern than 3DNS.

Performance Evaluation of CoMirror System with Video Call and Messaging Function between Smart Mirrors (스마트 미러간 화상 통화와 메시징 기능을 가진 CoMirror 시스템의 성능평가)

  • Kitae Hwang;Kyung-Mi Kim;Yu-Jin Kim;Chae-Won Park;Song-Yeon Yoo;In-Hwan Jung;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2023
  • Smart mirror is an IoT device that attaches a display and an embedded computer to the mirror and provides various information to the user along with the mirror function. This paper presents performance evaluation of the CoMirror system as an extension of the previous research in which proposed and implemented the CoMirror system that connects Smart Mirrors using a network. First, the login performance utilizing face recognition was evaluated. As result of the performance evaluation, it was concluded that the 40 face images are most suitable for face learning and only one face image is most suitable for face recognition for login. Second, as a result of evaluating the message transmission time, the average time was 0.5 seconds for text, 0.63 seconds for audio, and 2.9 seconds for images. Third, as a result of measuring a video communication performance, the average setup time for video communication was 1.8 seconds and the average video reception time was 1.9 seconds. Finally, according to the performance evaluation results, we conclude that the CoMirror system has high practicality.

Some Views for the Buddhist Culture of Southeast Asia at Middle Ages through the Chinese Description (I): Focused on the documents of Faxian and Ichong (중국문헌을 통해본 중세 동남아의 불교문화(I): 법현(法顯)과 의정(義淨)의 저술을 중심으로)

  • JOO, Soo Wan
    • SUVANNABHUMI
    • /
    • v.2 no.1
    • /
    • pp.55-94
    • /
    • 2010
  • Even Faxian(法顯)'s Gaosengfaxianchuan (『高僧法顯傳』) and Iching(義淨)'s Nanhaijiguineifachuan (『南海寄歸內法傳』) are regarded as very important and useful documents to study the southeast asian buddhist culture, it is very difficult to grasp the contemporary state of those area because their descriptions are very brief and implicit. Therefore this essay aimed an in-depth reading their documents as original texts of modern understanding of those area, and tried to make a new views to approach the southeast asian buddhist culture by some more historically and concretely. At the early 5th century when Faxian(法顯) arrived, Buddhism was flourished in Sri Lanka. Because already a long time passed since the Saṇgha was schismatized into conservative and progressive at around the dominical year, he mentioned nothing about the conflict or disharmony of two orders. And the faith of Buddha tooth relic, which had been uprisen at 50 years ago from Faxian's visiting, was concretely established as a representative religion of Sri Lanka. According to his record, the carrying ritual of this Buddha tooth was performed very magnificently as similar with recent Korean Youngsan ceremony(靈山齋). In the mean time, it looks there were many sculptures of Buddha image made of precious stone of special product from Sri Lanka. The faith of Buddha-pāda(the Buddha's foot-prints) was also generalized at that time. The most famous monk of his contemporary Sir Lanka was Buddhaghosa, the author of Visuddhi-magga, but it is not sure that Faxian had met him. It can be suspected that the funeral in which Faxian participated could be belonged to him, or the Visuddhi-magga was writing at the peak during Faxian's staying. On the way to return to China, Faxian embarked an indigenous ship around Indonesia. It means there were no chinese trade ship which he can use. So the trade between china and southeast asia was advanced by south asian ships, and the chinese ships were not yet joined at that time so activity. And at least until that time, it looks there were no any remarkable buddhist movement in the southeast asian countries by where he stopped. In contrast, the southeast asian world which be seen by Iching had already experienced a lot of changes. He was impressed by the high quality buddhist culture of those area, and insisted to accept it to china. Further, he analyzed the sects of buddhism which were prevalent around the southeast asia in his contemporary time, and tried to make a good relationship with each native monks for learning from them. It looks the center of those exchanges may be Śrīvijaya of Indonesia. He also mentioned the situation of the late 7th century's Funan(扶南) in Cambodia. At that time, the buddhist Saṇgha was oppressed by newly rising Khmer(眞臘). On the other hand, he described the points of sameness and difference in detail between Indian and southeast asian buddhist culture in the field of ritual as like the practical use of garments, buddha images, and daily recited scriptures. There must be a lot of another aspects which this essay couldn't gather up or catch from these documents. Nevertheless, I hope this essay can help the researchers of this field and will wait for any advices and comments from them.

  • PDF

The Automated Scoring of Kinematics Graph Answers through the Design and Application of a Convolutional Neural Network-Based Scoring Model (합성곱 신경망 기반 채점 모델 설계 및 적용을 통한 운동학 그래프 답안 자동 채점)

  • Jae-Sang Han;Hyun-Joo Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.237-251
    • /
    • 2023
  • This study explores the possibility of automated scoring for scientific graph answers by designing an automated scoring model using convolutional neural networks and applying it to students' kinematics graph answers. The researchers prepared 2,200 answers, which were divided into 2,000 training data and 200 validation data. Additionally, 202 student answers were divided into 100 training data and 102 test data. First, in the process of designing an automated scoring model and validating its performance, the automated scoring model was optimized for graph image classification using the answer dataset prepared by the researchers. Next, the automated scoring model was trained using various types of training datasets, and it was used to score the student test dataset. The performance of the automated scoring model has been improved as the amount of training data increased in amount and diversity. Finally, compared to human scoring, the accuracy was 97.06%, the kappa coefficient was 0.957, and the weighted kappa coefficient was 0.968. On the other hand, in the case of answer types that were not included in the training data, the s coring was almos t identical among human s corers however, the automated scoring model performed inaccurately.

A study on discharge estimation for the event using a deep learning algorithm (딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구)

  • Song, Chul Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

A Case Study of SW Project English Teaching through PBL method in an Untact Environment (Untact 상황에서 PBL 교수법을 통한 SW 프로젝트 영어 지도 사례 연구)

  • Lee, Sungock;Kim, Minkyu;Lee, Hyuesoo;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.514-517
    • /
    • 2021
  • The purpose of this study is to discover the occupational identity by examining the narrative of the life of a vocational training teacher with self-esteem in programming fields. The following six types of occupational identity were found: 'a positive image of a vocational training teacher(fits oneself)', 'I feel proud of myself while doing vocational training activities.', 'a teacher who continues to develop him/herself as an expert in the subject class', 'a teacher who immerses him/herself as an expert on student change and growth', 'a teacher engaged in leading activities to create opportunities for vocational training', and 'a teacher of continuous pursuit'. This study has significance in exploring the structure of occupational identity recognition and experience of its formation of a self-esteemed vocational training teacher in programming fields, which have not been studied.

  • PDF