• Title/Summary/Keyword: Image Histogram

Search Result 1,258, Processing Time 0.026 seconds

Similar Image Retrieval using Color Histogram and Edge Histogram Descriptor (컬러 히스토그램과 에지 히스토그램 디스크립터를 이용한 영상 검색 기법)

  • Jo, Min-Hyuk;Lee, Sang-Geol;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.332-335
    • /
    • 2013
  • In this paper, we propose an image retrieval method using an EHD (Edge Histogram Descriptor) of MPEG-7 and the color histogram. The EHD algorithm can be used to collect the gradient of edge distribution and to find a similar image. However, if you only search the edge gradient without considering the image color, the color shows a weakness. In order to overcome this problem, we use the color histogram and extract the feature to determine whether a similar image. The proposed method shows that the weakness of existing EHD can be overcome by using the color histogram.

  • PDF

Image Contrast Enhancement Based on a Multi-Cue Histogram

  • Lee, Sung-Ho;Zhang, Dongni;Ko, Sung-Jea
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.349-353
    • /
    • 2015
  • The conventional intensity histogram does not indicate edge information, which is important in the perception of image contrast. In this paper, we propose a multi-cue histogram (MCH) to represent a collaborative distribution of both the intensity and the edges of an image. Based on the MCH, if the intensity values have high frequency and a large gradient magnitude, they are spread into a larger dynamic range. Otherwise, the intensity values are not strongly stretched. As a result, image details, such as edges and textures, can be enhanced while artifacts and noise can be prevented, as demonstrated in the experimental results.

Development of Adaptive Endoscope Image Enhancer Using Histogram (Histogram을 이용한 적응형 내시경 Image Enhancer의 개발)

  • Lee, S.H.;Kim, J.H.;Song, C.G.;Lee, Y.M.;Kim, W.K.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.345-348
    • /
    • 1997
  • Endoscope image is the shape that a doctor sees inside of patient through endoscope. The characteristics of these images are much effected by the light source of endoscope, specially areas in short distance from a light have much light source and look clear, but areas in long distance from a light look dark relatively because of little light quantity. So we developed a new level adaptive image enhancer for the dark area in a endoscope image. The algorithm we made consists of three parts ; 1) Classification of histogram in segmented area 2) Smoothing and Adaptive Histogram Equalization 3) Adaptive Histogram Modification.

  • PDF

A Method of Improving Accuracy of Histogram Specification (정확성을 향상시킨 히스토그램 명세화 방법)

  • Huh, Kyung Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-179
    • /
    • 2014
  • The histogram specification turns the shape of a histogram into that we want to specify. This technique can be applied usefully in various image processing fields such as machine vision. However, the histogram specification technique has its basic limits. For instance, the histogram does not have location information of pixels. Also, the accuracy of the specification drops because of quantization errors of the digitized image. In this paper, we proposed a multiresolution histogram specification method in order to improve the accuracy of specification in terms of resemblance between destination and source image. The experimental results show that the proposed method enhances the accuracy of the specification compared to the conventional methods.

A Novel Filter ed Bi-Histogram Equalization Method

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.6
    • /
    • pp.691-700
    • /
    • 2015
  • Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

Exact Histogram Specification Considering the Just Noticeable Difference

  • Jung, Seung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.

Regional Dynamic Range Histogram Equalization for Image Enhancement (국부영역의 동적범위 변화를 이용한 영상 개선 알고리즘)

  • Lee Eui-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.101-109
    • /
    • 2004
  • Image enhancement for Infrared imaging system is mainly based on the global histogram equalization. The global histogram equalization(GHE) is a method in which each pixel is equalized by using a whole histogram of an image. GHE is speedy and effective for real-time imaging system but its method fails to enhance the fine details. On the other hand, the basic local histogram equalization(LHE) method uses sliding a window and. the pixels under the window region are equalized over the whole output dynamic range. The LHE is adequate to enhance the fine details. But this method is computationally slow and noises are over-enhanced. So various local histogram equalization methods have been already presented to overcome these problems of LHE. In this paper, a new regional dynamic range histogram equalization (RDRHE) is presented. RDRHE improves the equalization quality while reducing the computational burden.

Edge Histogram Descriptor Using Characteristic Edge Block for Efficient Retrieval of Bio Image (Bio-Image 검색에 효율적인 특징적 Edge Block을 이용한 Edge Histogram Descriptor)

  • Seo, Mi-Suk;Nam, Jae-Yeal;Won, Chee-Sun;Choi, Yoon-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1121-1124
    • /
    • 2005
  • Edge Histogram Descriptor는 image의 edge 분포 정보를 표현하며 방향성을 가지는 Bio Image 검색에 있어 높은 검색 성능을 나타낸다. 그러나 Bio Image의 객체 분포의 특성으로 인해 지역적 edge 분포 비교는 충분한 검색 성능을 보장하지는 못한다. 본 논문에서는 특징 block을 이용한 효율적인 검색 알고리즘을 제안한다. Local histogram으로부터 Global bin을 얻어 image의 대표 방향성을 선정하고 특징 block을 선정한다. 특징 block의 비교는 edge 분포와 함께 주요 객체의 위치 정보를 더하는 효과를 가진다. Bio Image의 검색 실험에서 제안 알고리즘은 향상된 검색 성능을 보여준다. 또한 Bio image 검색을 위한 descriptor 조합 연구에도 적용 가능하여 검색 효율을 기대할 수 있다.

  • PDF

Color Enhancement of Low Exposure Images using Histogram Specification and its Application to Color Shift Model-Based Refocusing

  • Lee, Eunsung;Kang, Wonseok;Kim, Sangjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • An image obtained from a low light environment results in a low-exposure problem caused by non-ideal camera settings, i.e. aperture size and shutter speed. Of particular note, the multiple color-filter aperture (MCA) system inherently suffers from low-exposure problems and performance degradation in its image classification and registration processes due to its finite size of the apertures. In this context, this paper presents a novel method for the color enhancement of low-exposure images and its application to color shift model-based MCA system for image refocusing. Although various histogram equalization (HE) approaches have been proposed, they tend to distort the color information of the processed image due to the range limits of the histogram. The proposed color enhancement algorithm enhances the global brightness by analyzing the basic cause of the low-exposure phenomenon, and then compensates for the contrast degradation artifacts by using an adaptive histogram specification. We also apply the proposed algorithm to the preprocessing step of the refocusing technique in the MCA system to enhance the color image. The experimental results confirm that the proposed method can enhance the contrast of any low-exposure color image acquired by a conventional camera, and is suitable for commercial low-cost, high-quality imaging devices, such as consumer-grade camcorders, real-time 3D reconstruction systems, digital, and computational cameras.

  • PDF

Single Image Based HDR Algorithm Using Statistical Differencing and Histogram Manipulation (통계적 편차와 히스토그램 변형을 이용한 단일영상기반 고품질 영상 생성기법)

  • Song, Jin-Sun;Han, Kyu-Phil;Park, Yang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.764-771
    • /
    • 2018
  • In this paper, we propose a high-quality image acquisition algorithm using only a single image, which the high-quality image is normally referred as HDR ones. In order to acquire the HDR image, conventional methods need many images having different exposure values at the same scene and should delicately adjust the color values for a bit-expansion or an exposure fusion. Thus, they require considerable calculations and complex structures. Therefore, the proposed algorithm suggests a completely new approach using one image for the high-quality image acquisition by applying statistical difference and histogram manipulation, or histogram specification, techniques. The techniques could control the pixel's statistical distribution of the input image into the desired one through the local and the global modifications, respectively. As the result, the quality of the proposed algorithm is better than those of conventional methods implemented in commercial image editing softwares.