Accurate detection of traffic lights is very important for the advanced driver assistance system (ADAS). There have been many research developments in this area. However, conventional of image processing methods are usually sensitive to varying illumination conditions. This paper proposes a traffic light detection algorithm to overcome this situation. The proposed algorithm first detects the candidates of traffic light using the proposed color map and hue-saturation-value (HSV) Traffic lights are then detected using the conventional histogram of oriented gradients (HOG) descriptor and support vector machine (SVM). Finally, the proposed Multilayer HOG descriptor is used to determine the direction information indicated by traffic lights. The proposed algorithm shows a high detection rate in real-time.
An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.
Most stereo matching methods use intensity values in small image patches to measure the correspondence between two points. If the noisy pixels are used in computing the corresponding point, the matching performance becomes low. For this reason, the noise plays a critical role in determining the matching performance. In this paper, we propose a method for combining intensity and edge filters robust to the noise in order to improve the performance of stereo matching using high resolution satellite imagery. We used intensity filters such as Mean, Median, Midpoint and Gaussian filter and edge filters such as Gradient, Roberts, Prewitt, Sobel and Laplacian filter. To evaluate the performance of intensity and edge filters, experiments were carried out on both synthetic images and satellite images with uniform or gaussian noise. Then each filter was ranked based on its performance. Among the intensity and edge filters, Median and Sobel filter showed best performance while Midpoint and Laplacian filter showed worst result. We used Ikonos satellite stereo imagery in the experiments and the matching method using Median and Sobel filter showed better matching results than other filter combinations.
Kim, Jeongsoo;Park, Sangmi;Hong, Changhee;Park, Seunghwa;Lee, Jaewook
Journal of the Society of Disaster Information
/
v.18
no.2
/
pp.364-373
/
2022
Purpose: The purpose of this paper is to develope smoke detection using AI model for detecting the initial fire in underground utility tunnels using CCTV Method: To improve detection performance of smoke which is high irregular, a deep learning model for fire detection was trained to optimize smoke detection. Also, several approaches such as dataset cleansing and gradient exploding release were applied to enhance model, and compared with results of those. Result: Results show the proposed approaches can improve the model performance, and the final model has good prediction capability according to several indexes such as mAP. However, the final model has low false negative but high false positive capacities. Conclusion: The present model can apply to smoke detection in underground utility tunnel, fixing the defect by linking between the model and the utility tunnel control system.
Journal of the Korea Society of Computer and Information
/
v.14
no.7
/
pp.33-40
/
2009
Edge detection is very significant in low level image processing. However, majority edge detection methods are not only effective enough cause of the noise points' influence, even not flexible enough to different input images. In order to sort these problems, in this paper an algorithm is presented that has an extra noise reduction stage at first, and then automatically selects the both thresholds depending on gradient amplitude histogram and intra class minimum variance. Using this algorithm, can fade out almost all of the sensitive noise points, and calculate the propose thresholds for different images without setting up the practical parameters artificially, and then choose edge pixels by fuzzy algorithm. In finally, get the better result than the former Canny algorithm.
This study is aimed to evaluate the effect of $T_{1/2}$ upon count rates in the analysis of dynamic scan using NaI (Tl) scintillation camera, and suggest a new quality control method with this effects. We producted a point source with $^{99m}TcO_4^-$ of 18.5 to 185 MBq in the 2 mL syringes, and acquired 30 frames of dynamic images with 10 to 60 seconds each using Infinia gamma camera (GE, USA). In the second experiment, 90 frames of dynamic images were acquired from 74 MBq point source by 5 gamma cameras (Infinia 2, Forte 2, Argus 1). There were not significant differences in average count rates of the sources with 18.5 to 92.5 MBq in the analysis of 10 to 60 seconds/frame with 10 seconds interval in the first experiment (p>0.05). But there were significantly low average count rates with the sources over 111 MBq activity at 60 seconds/frame (p<0.01). According to the second analysis results of linear regression by count rates of 5 gamma cameras those were acquired during 90 minutes, counting efficiency of fourth gamma camera was most low as 0.0064%, and gradient and coefficient of variation was high as 0.0042 and 0.229 each. We could not find abnormal fluctuation in $x^2$ test with count rates (p>0.02), and we could find the homogeneity of variance in Levene's F-test among the gamma cameras (p>0.05). At the correlation analysis, there was only correlation between counting efficiency and gradient as significant negative correlation (r=-0.90, p<0.05). Lastly, according to the results of calculation of $T_{1/2}$ error from change of gradient with -0.25% to +0.25%, if $T_{1/2}$ is relatively long, or gradient is high, the error increase relationally. When estimate the value of 4th camera which has highest gradient from the above mentioned result, we could not see $T_{1/2}$ error within 60 minutes at that value. In conclusion, it is necessary for the scintillation gamma camera in medical field to manage hard for the quality of radiation measurement. Especially, we found a tendency that count rate changes over time at this study, and we proved that it can effect $T_{1/2}$. And also, there is need of appropriate phantoms and the method of quality management like this study, because there are not any advice or limitation degrees for domestic medical purpose scintillation camera.
We introduce in this paper a new method for smooth foldover-free warping of images, based on the vector field deformation technique proposed by Von Funck et al. It allows users to specify the constraints in two different ways: positional constraints to constrain the position of a point in the image and gradient constraints to constrain the orientation and scaling of some parts of the image. From the user-specified constraints, it computes in the image domain a C1-continuous velocity vector field, along which each pixel progressively moves from its original position to the target. The target positions of the pixels are obtained by solving a set of partial derivative equations with the 4th order Runge-Kutta method. We show how our method can be useful for texture mapping with hard constraints. We start with an unconstrained planar embedding of a target mesh using a previously known method (Least Squares Conformal Map). Then, in order to obtain a texture map that satisfies the given constraints, we use the proposed warping method to align the features of the texture image with those on the unconstrained embedding. Compared to previous work, our method generates a smoother texture mapping, offers higher level of control for defining the constraints, and is simpler to implement.
Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.
Kim, Heejin;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Ji, Young Hoon;Yi, Chul-Young;Kim, Kum Bae
Progress in Medical Physics
/
v.24
no.2
/
pp.99-107
/
2013
The surgical resection was occurred mainly in liver metastasis before the development of radiation therapy techniques. Recently, Radiation therapy is increased gradually due to the development of radiation dose delivery techniques. 18F-FDG PET image showed better sensitivity and specificity in liver metastasis detection. This image modality is important in the radiation treatment with planning CT for tumor delineation. In this study, we applied automatic image segmentation methods on PET image of liver metastasis and examined the impact of image factors on these methods. We selected the patients who were received the radiation therapy and 18F-FDG PET/CT in Korea Cancer Center Hospital from 2009 to 2012. Then, three kinds of image segmentation methods had been applied; The relative threshold method, the Gradient method and the region growing method. Based on these results, we performed statistical analysis in two directions. 1. comparison of GTV and image segmentation results. 2. performance of regression analysis for relation between image factor affecting image segmentation techniques. The mean volume of GTV was $60.9{\pm}65.9$ cc and the $GTV_{40%}$ was $22.43{\pm}35.27$ cc, and the $GTV_{50%}$ was $10.11{\pm}17.92$ cc, the $GTV_{RG}$ was $32.89{\pm}36.8$4 cc, the $GTV_{GD}$ was $30.34{\pm}35.77$ cc, respectively. The most similar segmentation method with the GTV result was the region growing method. For the quantitative analysis of the image factors which influenced on the region growing method, we used the standardized coefficient ${\beta}$, factors affecting the region growing method show GTV, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR in order. The result of the region growing (automatic segmentation) method showed the most similar result with the CT based GTV and the region growing method was affected by image factors. If we define the tumor volume by the auto image segmentation method which reflect the PET image parameters, more accurate and consistent tumor contouring can be done. And we can irradiate the optimized radiation dose to the cancer, ultimately.
Park, Min-Joon;Kwon, Min-Jun;Kim, Gi-Hun;Shim, Han-Seul;Kim, Dong-Wook;Lim, Dong-Hoon
The Korean Journal of Applied Statistics
/
v.24
no.2
/
pp.359-371
/
2011
Edge detection in images is an important step in image segmentation and object recognition as preprocessing for image processing. This paper presents a new edge detection using local histogram analysis based on wavelet transform. In this work, the wavelet transform uses three components (horizontal, vertical and diagonal) to find the magnitude of the gradient vector, instead of the conventional approach in which tw components are used. We compare the magnitude of the gradient vector with the threshold that is obtained from a local histogram analysis to conclude that an edge is present or not. Some experimental results for our edge detector with a Sobel, Canny, Scale Multiplication, and Mallat edge detectors on sample images are given and the performances of these edge detectors are compared in terms of quantitative and qualitative measures. Our detector performs better than the other wavelet-based detectors such as Scale Multiplication and Mallat detectors. Our edge detector also preserves a good performance even if the Sobel and Canny detector are sharply low when the images are highly corrupted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.