• Title/Summary/Keyword: Image Gradient

Search Result 714, Processing Time 0.028 seconds

Experimental Study of Chemical Shift Artifacts at 1.5T and 3.0T MRI using Gradient Echo Pulse Sequence (GE 펄스시퀀스을 이용한 1.5T와 3.0T MRI의 화학적 이동 인공물의 실험적 연구)

  • Cheol, Kweon Dae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.531-537
    • /
    • 2016
  • An experimental study was to use the parameter to determine the MRI artifact of chemical shift that occurs in water and fats. Scanning the image according to the encoding parameter and the bandwidth and change in 1.5T and 3.0T MRI to the SNR, we compared the CNR. In the image was confirmed that the occurrence of artefacts in the chemical shift of the water and oil. 3.0T more image artifacts in the 1.5T was confirmed that the relatively reduced. The width of the bandwidth it could be confirmed that according to the honeycombs artifacts decrease. Therefore, in order to reduce the artifacts in the MRI scan of the chemical shift runners weak field strength, is thought to be appropriate to widen the width of the bandwidth.

Occlusion Processing in Simulation using Improved Object Contour Extraction Algorithm by Neighboring edge Search and MER (이웃 에지 탐색에 의한 개선된 객체 윤곽선 추출 알고리즘과 MER을 이용한 모의훈련에서의 폐색처리)

  • Cha, Jeong-Hee;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.206-211
    • /
    • 2008
  • Trainee can enhance his perception of and interaction with the real world by displayed virtual objects in simulation using image processing technology. Therefore, it is essential for realistic simulation to determine the occlusion areas of the virtual object produces after registering real image and virtual object exactly. In this paper, we proposed the new method to solve occlusions which happens during virtual target moves according to the simulated route on real image using improved object contour extraction by neighboring edge search and picking algorithm. After we acquire the detailed contour of complex objects by proposed contour extraction algorithm, we extract the three dimensional information of the position happening occlusion by using MER for performance improvement. In the experiment, we compared proposed method with existed method and preyed the effectiveness in the environment which a partial occlusions happens.

Evaluation of Hippocampal Volume Based on Various Inversion Time in Normal Adults by Manual Tracing and Automated Segmentation Methods

  • Kim, Ju Ho;Choi, Dae Seob;Kim, Seong-hu;Shin, Hwa Seon;Seo, Hyemin;Choi, Ho Cheol;Son, Seungnam;Tae, Woo Suk;Kim, Sam Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.67-75
    • /
    • 2015
  • Purpose: To investigate the value of image post-processing software (FreeSurfer, IBASPM [individual brain atlases using statistical parametric mapping software]) and inversion time (TI) in volumetric analyses of the hippocampus and to identify differences in comparison with manual tracing. Materials and Methods: Brain images from 12 normal adults were acquired using magnetization prepared rapid acquisition gradient echo (MPRAGE) with a slice thickness of 1.3 mm and TI of 800, 900, 1000, and 1100 ms. Hippocampal volumes were measured using FreeSurfer, IBASPM and manual tracing. Statistical differences were examined using correlation analyses accounting for spatial interpretations percent volume overlap and percent volume difference. Results: FreeSurfer revealed a maximum percent volume overlap and maximum percent volume difference at TI = 800 ms ($77.1{\pm}2.9%$) and TI = 1100 ms ($13.1{\pm}2.1%$), respectively. The respective values for IBASPM were TI = 1100 ms ($55.3{\pm}9.1%$) and TI = 800 ms ($43.1{\pm}10.7%$). FreeSurfer presented a higher correlation than IBASPM but it was not statistically significant. Conclusion: FreeSurfer performed better in volumetric determination than IBASPM. Given the subjective nature of manual tracing, automated image acquisition and analysis image is accurate and preferable.

Median Filtering Detection of Digital Images Using Pixel Gradients

  • RHEE, Kang Hyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.195-201
    • /
    • 2015
  • For median filtering (MF) detection in altered digital images, this paper presents a new feature vector that is formed from autoregressive (AR) coefficients via an AR model of the gradients between the neighboring row and column lines in an image. Subsequently, the defined 10-D feature vector is trained in a support vector machine (SVM) for MF detection among forged images. The MF classification is compared to the median filter residual (MFR) scheme that had the same 10-D feature vector. In the experiment, three kinds of test items are area under receiver operating characteristic (ROC) curve (AUC), classification ratio, and minimal average decision error. The performance is excellent for unaltered (ORI) or once-altered images, such as $3{\times}3$ average filtering (AVE3), QF=90 JPEG (JPG90), 90% down, and 110% up to scale (DN0.9 and Up1.1) images, versus $3{\times}3$ and $5{\times}5$ median filtering (MF3 and MF5, respectively) and MF3 and MF5 composite images (MF35). When the forged image was post-altered with AVE3, DN0.9, UP1.1 and JPG70 after MF3, MF5 and MF35, the performance of the proposed scheme is lower than the MFR scheme. In particular, the feature vector in this paper has a superior classification ratio compared to AVE3. However, in the measured performances with unaltered, once-altered and post-altered images versus MF3, MF5 and MF35, the resultant AUC by 'sensitivity' (TP: true positive rate) and '1-specificity' (FN: false negative rate) is achieved closer to 1. Thus, it is confirmed that the grade evaluation of the proposed scheme can be rated as 'Excellent (A)'.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Classification of Whole Body Bone Scan Image with Bone Metastasis using CNN-based Transfer Learning (CNN 기반 전이학습을 이용한 뼈 전이가 존재하는 뼈 스캔 영상 분류)

  • Yim, Ji Yeong;Do, Thanh Cong;Kim, Soo Hyung;Lee, Guee Sang;Lee, Min Hee;Min, Jung Joon;Bom, Hee Seung;Kim, Hyeon Sik;Kang, Sae Ryung;Yang, Hyung Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1224-1232
    • /
    • 2022
  • Whole body bone scan is the most frequently performed nuclear medicine imaging to evaluate bone metastasis in cancer patients. We evaluated the performance of a VGG16-based transfer learning classifier for bone scan images in which metastatic bone lesion was present. A total of 1,000 bone scans in 1,000 cancer patients (500 patients with bone metastasis, 500 patients without bone metastasis) were evaluated. Bone scans were labeled with abnormal/normal for bone metastasis using medical reports and image review. Subsequently, gradient-weighted class activation maps (Grad-CAMs) were generated for explainable AI. The proposed model showed AUROC 0.96 and F1-Score 0.90, indicating that it outperforms to VGG16, ResNet50, Xception, DenseNet121 and InceptionV3. Grad-CAM visualized that the proposed model focuses on hot uptakes, which are indicating active bone lesions, for classification of whole body bone scan images with bone metastases.

Segmentation of Mammography Breast Images using Automatic Segmen Adversarial Network with Unet Neural Networks

  • Suriya Priyadharsini.M;J.G.R Sathiaseelan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.151-160
    • /
    • 2023
  • Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. Automatic segmentation of the breast part using Mammography pictures can help reduce the area available for cancer search while also saving time and effort compared to manual segmentation. Autoencoder-like convolutional and deconvolutional neural networks (CN-DCNN) were utilised in previous studies to automatically segment the breast area in Mammography pictures. We present Automatic SegmenAN, a unique end-to-end adversarial neural network for the job of medical image segmentation, in this paper. Because image segmentation necessitates extensive, pixel-level labelling, a standard GAN's discriminator's single scalar real/fake output may be inefficient in providing steady and appropriate gradient feedback to the networks. Instead of utilising a fully convolutional neural network as the segmentor, we suggested a new adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local attributes that collect long- and short-range spatial relations among pixels. We demonstrate that an Automatic SegmenAN perspective is more up to date and reliable for segmentation tasks than the state-of-the-art U-net segmentation technique.

Active Sonar Classification Algorithm based on HOG Feature (HOG 특징 기반 능동 소나 식별 기법)

  • Shin, Hyunhak;Park, Jaihyun;Ku, Bonhwa;Seo, Iksu;Kim, Taehwan;Lim, Junseok;Ko, Hanseok;Hong, Wooyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.

On Robust Principal Component using Analysis Neural Networks (신경망을 이용한 로버스트 주성분 분석에 관한 연구)

  • Kim, Sang-Min;Oh, Kwang-Sik;Park, Hee-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.113-118
    • /
    • 1996
  • Principal component analysis(PCA) is an essential technique for data compression and feature extraction, and has been widely used in statistical data analysis, communication theory, pattern recognition, and image processing. Oja(1992) found that a linear neuron with constrained Hebbian learning rule can extract the principal component by using stochastic gradient ascent method. In practice real data often contain some outliers. These outliers will significantly deteriorate the performances of the PCA algorithms. In order to make PCA robust, Xu & Yuille(1995) applied statistical physics to the problem of robust principal component analysis(RPCA). Devlin et.al(1981) obtained principal components by using techniques such as M-estimation. The propose of this paper is to investigate from the statistical point of view how Xu & Yuille's(1995) RPCA works under the same simulation condition as in Devlin et.al(1981).

  • PDF

A Study on the Outbreak and Transport Processes of the Severe Asian Dust Event Observed in March 2010 (2010년 3월 극심한 황사사례의 발생 및 수송과정에 관한 연구)

  • Kim, Sukwoo;Song, Sang-Keun;Han, Seung-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.256-271
    • /
    • 2016
  • The source and transport of the severe Asian dust event (ADE) recently observed in the Korean peninsula were analyzed based on observations (surface weather charts and satellite data) and modeling study (WRF-CMAQ modeling systems). The ADE occurred on 20-21 March 2010 in South Korea with very high $PM_{10}$ concentrations (up to approximately $3,000{\mu}g/m^3$ in Daegu and Jeju). The dominant meteorological conditions affecting the dust outbreak and transport processes were found to be associated with the two synoptic features: (1) strong airflows (i.e., westerlies) induced by a strong pressure gradient resulting from a dense isobar pattern (west-high and east-low) between Tuva Republic and Mongolia and (2) a rapid movement of the strong westerlies merged with airflows generated near Gobi Desert and Inner Mongolia. The merged strong westerlies with a low pressure played a pivotal role in the huge amount of AD and its transport height of 5-8 km. The time and location of dust emissions calculated in the source regions were similar to those observed in the weather charts and satellite image. The ADE simulation mostly showed agreement in the patterns and the concentration levels of modeled dust (including $PM_{10}$) with those of the observations.