• Title/Summary/Keyword: Image Forensic

Search Result 69, Processing Time 0.026 seconds

A Method of Forensic Authentication via File Structure and Media Log Analysis of Digital Images Captured by iPhone (아이폰으로 촬영된 디지털 이미지의 파일 구조 및 미디어 로그 분석을 통한 법과학적 진본 확인 방법)

  • Park, Nam In;Lee, Ji Woo;Jeon, Oc-Yeub;Kim, Yong Jin;Lee, Jung Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.558-568
    • /
    • 2021
  • The digital image to be accepted as legal evidence, it is important to verify the authentication of the digital image. This study proposes a method of authenticating digital images through three steps of comparing the file structure of digital images taken with iPhone, analyzing the encoding information as well as media logs of the iPhone storing the digital images. For the experiment, digital image samples were acquired from nine iPhones through a camera application built into the iPhone. And the characteristics of file structure and media log were compared between digital images generated on the iPhone and digital images edited through a variety of image editing tools. As a result of examining those registered during the digital image creation process, it was confirmed that differences from the original characteristics occurred in file structure and media logs when manipulating digital images on the iPhone, and digital images take with the iPhone. In this way, it shows that it can prove its forensic authentication in iPhone.

Standard Model for Mobile Forensic Image Development

  • Sojung, Oh;Eunjin, Kim;Eunji, Lee;Yeongseong, Kim;Gibum, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.626-643
    • /
    • 2023
  • As mobile forensics has emerged as an essential technique, the demand for technology development, education and training is increasing, wherein images are used. Academic societies in South Korea and national institutions in the US and the UK are leading the Mobile Forensic Image development. However, compared with disks, images developed in a mobile environment are few cases and have less active research, causing a waste of time, money, and manpower. Mobile Forensic Images are also difficult to trust owing to insufficient verification processes. Additionally, in South Korea, there are legal issues involving the Telecommunications Business Act and the Act on the Protection and Use of Location Information. Therefore, in this study, we requested a review of a standard model for the development of Mobile Forensic Image from experts and designed an 11-step development model. The steps of the model are as follows: a. setting of design directions, b. scenario design, c. selection of analysis techniques, d. review of legal issues, e. creation of virtual information, f. configuring system settings, g. performing imaging as per scenarios, h. Developing a checklist, i. internal verification, j. external verification, and k. confirmation of validity. Finally, we identified the differences between the mobile and disk environments and discussed the institutional efforts of South Korea. This study will also provide a guideline for the development of professional quality verification and proficiency tests as well as technology and talent-nurturing tools. We propose a method that can be used as a guide to secure pan-national trust in forensic examiners and tools. We expect this study to strengthen the mobile forensics capabilities of forensic examiners and researchers. This research will be used for the verification and evaluation of individuals and institutions, contributing to national security, eventually.

Forensic Image Classification using Data Mining Decision Tree (데이터 마이닝 결정나무를 이용한 포렌식 영상의 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.49-55
    • /
    • 2016
  • In digital forensic images, there is a serious problem that is distributed with various image types. For the problem solution, this paper proposes a classification algorithm of the forensic image types. The proposed algorithm extracts the 21-dim. feature vector with the contrast and energy from GLCM (Gray Level Co-occurrence Matrix), and the entropy of each image type. The classification test of the forensic images is performed with an exhaustive combination of the image types. Through the experiments, TP (True Positive) and FN (False Negative) is detected respectively. While it is confirmed that performed class evaluation of the proposed algorithm is rated as 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic Curve) is 0.9980 by the sensitivity and the 1-specificity. Also, the minimum average decision error is 0.1349. Also, at the minimum average decision error is 0.0179, the whole forensic image types which are involved then, our classification effectiveness is high.

A Study on the Skull Injury Using MDCT image and ADINA F.E.M. Program (MDCT 영상과 ADINA 유한요소해석 프로그램을 활용한 두개골 손상 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk;Yang, Kyung Moo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • In this paper, the finite element analysis using ADINA has performed to investigate an accident that a man's head was damaged by the falling object. The simulation condition has defined by the point of forensic medicine view and the CCTV image analysis. From the CCTV image analysis, we expected that the sphere diameter of object is 15cm and object color is white. Assuming the falling mass is the ice mass, the results of the ADINA simulation show that a man's head can be broken by the falling ice mass.

A Forensic Methodology for Detecting Image Manipulations (이미지 조작 탐지를 위한 포렌식 방법론)

  • Jiwon Lee;Seungjae Jeon;Yunji Park;Jaehyun Chung;Doowon Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.671-685
    • /
    • 2023
  • By applying artificial intelligence to image editing technology, it has become possible to generate high-quality images with minimal traces of manipulation. However, since these technologies can be misused for criminal activities such as dissemination of false information, destruction of evidence, and denial of facts, it is crucial to implement strong countermeasures. In this study, image file and mobile forensic artifacts analysis were conducted for detecting image manipulation. Image file analysis involves parsing the metadata of manipulated images and comparing them with a Reference DB to detect manipulation. The Reference DB is a database that collects manipulation-related traces left in image metadata, which serves as a criterion for detecting image manipulation. In the mobile forensic artifacts analysis, packages related to image editing tools were extracted and analyzed to aid the detection of image manipulation. The proposed methodology overcomes the limitations of existing graphic feature-based analysis and combines with image processing techniques, providing the advantage of reducing false positives. The research results demonstrate the significant role of such methodology in digital forensic investigation and analysis. Additionally, We provide the code for parsing image metadata and the Reference DB along with the dataset of manipulated images, aiming to contribute to related research.

Detection for Operation Chain: Histogram Equalization and Dither-like Operation

  • Chen, Zhipeng;Zhao, Yao;Ni, Rongrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3751-3770
    • /
    • 2015
  • Many sorts of image processing software facilitate image editing and also generate a great number of doctored images. Forensic technology emerges to detect the unintentional or malicious image operations. Most of forensic methods focus on the detection of single operations. However, a series of operations may be used to sequentially manipulate an image, which makes the operation detection problem complex. Forensic investigators always want to know as much exhaustive information about a suspicious image's entire processing history as possible. The detection of the operation chain, consisting of a series of operations, is a significant and challenging problem in the research field of forensics. In this paper, based on the histogram distribution uniformity of a manipulated image, we propose an operation chain detection scheme to identify histogram equalization (HE) followed by the dither-like operation (DLO). Two histogram features and a local spatial feature are utilized to further determine which DLO may have been applied. Both theoretical analysis and experimental results verify the effectiveness of our proposed scheme for both global and local scenarios.

Age Estimation Based on Mandibular Premolar and Molar Development: A Pilot Study

  • Roh, Byung-Yoon;Kim, Eui-Joo;Seo, In-Soo;Kim, Hyeong-Geon;Ryu, Hye-Won;Lee, Ju-Heon;Seo, Yo-Seob;Ryu, Ji-Won;Ahn, Jong-Mo
    • Journal of Oral Medicine and Pain
    • /
    • v.46 no.4
    • /
    • pp.125-130
    • /
    • 2021
  • Purpose: The dental age estimation of children is performed using dental maturity. Postmortem missing of the anterior teeth or the distortion of image of the anterior teeth in panoramic radiographs can make it difficult to analyze the development of the anterior teeth. This pilot study was conducted to derive a new age estimation method based only on the developmental stage of mandibular posterior teeth. Methods: This study was conducted using panoramic radiographs of 650 subjects aged 3 to 15 years old. The dental developmental stages of the lower left first premolar, second premolar, first molar and second molar were evaluated according to the Demirjian's criteria. The intra-/inter-observer reliability was evaluated, and multiple linear regression analyses were performed including the developmental stage of each tooth as an independent variable. Results: The intra-/inter-observer reliability was 0.9626 and 0.8877, respectively, and showed very high reproducibility. Multiple linear regression analyses were performed for males and females, and the age calculation table was derived by obtaining the intercept and the coefficient according to the development stage of each tooth. The coefficient of determination (r2) of the age calculation method was 0.9634 for male and 0.9570 for female subjects, and the mean difference between chronological age and estimated dental age was -0.42 and -0.21, respectively. Conclusions: This pilot study evaluated the developmental stages of four lower posterior teeth in the Korean group according to Demirjian's criteria, and derived age estimation method. The accuracy was lower than when more teeth were used, but it will be useful to estimate age of children when the anterior teeth are difficult to accurately analyze.

Proposal of AI-based Digital Forensic Evidence Collecting System

  • Jang, Eun-Jin;Shin, Seung-Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.124-129
    • /
    • 2021
  • As the 4th industrial era is in full swing, the public's interest in related technologies such as artificial intelligence, big data, and block chain is increasing. As artificial intelligence technology is used in various industrial fields, the need for research methods incorporating artificial intelligence technology in related fields is also increasing. Evidence collection among digital forensic investigation techniques is a very important procedure in the investigation process that needs to prove a specific person's suspicions. However, there may be cases in which evidence is damaged due to intentional damage to evidence or other physical reasons, and there is a limit to the collection of evidence in this situation. Therefore, this paper we intends to propose an artificial intelligence-based evidence collection system that analyzes numerous image files reported by citizens in real time to visually check the location, user information, and shooting time of the image files. When this system is applied, it is expected that the evidence expected data collected in real time can be actually used as evidence, and it is also expected that the risk area analysis will be possible through big data analysis.

Detection Copy-Move Forgery in Image Via Quaternion Polar Harmonic Transforms

  • Thajeel, Salam A.;Mahmood, Ali Shakir;Humood, Waleed Rasheed;Sulong, Ghazali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4005-4025
    • /
    • 2019
  • Copy-move forgery (CMF) in digital images is a detrimental tampering of artefacts that requires precise detection and analysis. CMF is performed by copying and pasting a part of an image into other portions of it. Despite several efforts to detect CMF, accurate identification of noise, blur and rotated region-mediated forged image areas is still difficult. A novel algorithm is developed on the basis of quaternion polar complex exponential transform (QPCET) to detect CMF and is conducted involving a few steps. Firstly, the suspicious image is divided into overlapping blocks. Secondly, invariant features for each block are extracted using QPCET. Thirdly, the duplicated image blocks are determined using k-dimensional tree (kd-tree) block matching. Lastly, a new technique is introduced to reduce the flat region-mediated false matches. Experiments are performed on numerous images selected from the CoMoFoD database. MATLAB 2017b is used to employ the proposed method. Metrics such as correct and false detection ratios are utilised to evaluate the performance of the proposed CMF detection method. Experimental results demonstrate the precise and efficient CMF detection capacity of the proposed approach even under image distortion including rotation, scaling, additive noise, blurring, brightness, colour reduction and JPEG compression. Furthermore, our method can solve the false match problem and outperform existing ones in terms of precision and false positive rate. The proposed approach may serve as a basis for accurate digital image forensic investigations.

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.