• Title/Summary/Keyword: Image Feature Vector

Search Result 500, Processing Time 0.025 seconds

Aerial Scene Labeling Based on Convolutional Neural Networks (Convolutional Neural Networks기반 항공영상 영역분할 및 분류)

  • Na, Jong-Pil;Hwang, Seung-Jun;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.484-491
    • /
    • 2015
  • Aerial scene is greatly increased by the introduction and supply of the image due to the growth of digital optical imaging technology and development of the UAV. It has been used as the extraction of ground properties, classification, change detection, image fusion and mapping based on the aerial image. In particular, in the image analysis and utilization of deep learning algorithm it has shown a new paradigm to overcome the limitation of the field of pattern recognition. This paper presents the possibility to apply a more wide range and various fields through the segmentation and classification of aerial scene based on the Deep learning(ConvNet). We build 4-classes image database consists of Road, Building, Yard, Forest total 3000. Each of the classes has a certain pattern, the results with feature vector map come out differently. Our system consists of feature extraction, classification and training. Feature extraction is built up of two layers based on ConvNet. And then, it is classified by using the Multilayer perceptron and Logistic regression, the algorithm as a classification process.

A Object-Based Image Retrieval Using Feature Analysis and Fractal Dimension (특징 분석과 프랙탈 차원을 이용한 객체 기반 영상검색)

  • 이정봉;박장춘
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.173-186
    • /
    • 2004
  • This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.

  • PDF

A Defect Inspection Method in TFT-LCD Panel Using LS-SVM (LS-SVM을 이용한 TFT-LCD 패널 내의 결함 검사 방법)

  • Choi, Ho-Hyung;Lee, Gun-Hee;Kim, Ja-Geun;Joo, Young-Bok;Choi, Byung-Jae;Park, Kil-Houm;Yun, Byoung-Ju
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.852-859
    • /
    • 2009
  • Normally, to extract the defect in TFT-LCD inspection system, the image is obtained by using line scan camera or area scan camera which is achieved by CCD or CMOS sensor. Because of the limited dynamic range of CCD or CMOS sensor as well as the effect of the illumination, these images are frequently degraded and the important features are hard to decern by a human viewer. In order to overcome this problem, the feature vectors in the image are obtained by using the average intensity difference between defect and background based on the weber's law and the standard deviation of the background region. The defect detection method uses non-linear SVM (Supports Vector Machine) method using the extracted feature vectors. The experiment results show that the proposed method yields better performance of defect classification methods over conveniently method.

Hybrid Coding for Multi-spectral Satellite Image Compression (다중스펙트럼 위성영상 압축을 위한 복합부호화 기법)

  • Jung, Kyeong-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The hybrid coding algorithm for multi-spectral image obtained from satellite is discussed. As the spatial and spectral resolution of satellite image are rapidly increasing, there are enormous amounts of data to be processed for computer processing and data transmission. Therefore an efficient coding algorithm is essential for multi-spectral image processing. In this paper, VQ(vector quantization), quadtree decomposition, and DCT(discrete cosine transform) are combined to compress the multi-spectral image. VQ is employed for predictive coding by using the fact that each band of multi-spectral image has the same spatial feature, and DCT is for the compression of residual image. Moreover, the image is decomposed into quadtree structure in order to allocate the data bit according to the information content within the image block to improve the coding efficiency. Computer simulation on Landsat TM image shows the validity of the proposed coding algorithm.

  • PDF

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation (크기와 회전 변화에 불변 모멘트 알고리즘을 이용한 자동 검사 시스템에 관한 연구)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • The purpose of this study is to develop a practical image inspection system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from $30^{\circ}$ to $45^{\circ}$ simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment, the image inspection system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automation when the image inspection system developed from this research is applied to the productive field.

Vehicle License Plate Recognition System using DCT and LVQ (DCT와 LVQ를 이용한 차량번호판 인식 시스템)

  • 한수환
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 2002
  • This paper proposes a vehicle license plate recognition system, which has relatively a simple structure and is highly tolerant of noise, by using the DCT(Discrete Cosine Transform) coefficients extracted from the character region of a license plate and the LVQ(Learning Vector Quantization) neural network. The image of a license plate is taken from a captured vehicle image based on RGB color information, and the character region is derived by the histogram of the license plate and the relative position of individual characters in the plate. The feature vector obtained by the DCT of extracted character region is utilized as an input to the LVQ neural classifier fur the recognition process. In the experiment, 109 vehicle images captured under various types of circumstances were tested with the proposed method, and the relatively high extraction rate of license plates and recognition rate were achieved.

  • PDF

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

Image Coding Using DCT Map and Binary Tree-structured Vector Quantizer (DCT 맵과 이진 트리 구조 벡터 양자화기를 이용한 영상 부호화)

  • Jo, Seong-Hwan;Kim, Eung-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.81-91
    • /
    • 1994
  • A DCT map and new cldebook design algorithm based on a two-dimension discrete cosine transform (2D-DCT) is presented for coder of image vector quantizer. We divide the image into smaller subblocks, then, using 2D DCT, separate it into blocks which are hard to code but it bears most of the visual information and easy to code but little visual information, and DCT map is made. According to this map, the significant features of training image are extracted by using the 2D DCT. A codebook is generated by partitioning the training set into a binary tree based on tree-structure. Each training vector at a nonterminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. Compared with the pairwise neighbor (PPN) and classified VQ(CVQ) algorithm, about 'Lenna' and 'Boat' image, the new algorithm results in a reduction in computation time and shows better picture quality with 0.45 dB and 0.33dB differences as to PNN, 0.05dB and 0.1dB differences as to CVQ respectively.

  • PDF

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

Recognizing F5-like stego images from multi-class JPEG stego images

  • Lu, Jicang;Liu, Fenlin;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4153-4169
    • /
    • 2014
  • To recognize F5-like (such as F5 and nsF5) steganographic algorithm from multi-class stego images, a recognition algorithm based on the identifiable statistical feature (IDSF) of F5-like steganography is proposed in this paper. First, this paper analyzes the special modification ways of F5-like steganography to image data, as well as the special changes of statistical properties of image data caused by the modifications. And then, by constructing appropriate feature extraction sources, the IDSF of F5-like steganography distinguished from others is extracted. Lastly, based on the extracted IDSFs and combined with the training of SVM (Support Vector Machine) classifier, a recognition algorithm is presented to recognize F5-like stego images from images set consisting of a large number of multi-class stego images. A series of experimental results based on the detection of five types of typical JPEG steganography (namely F5, nsF5, JSteg, Steghide and Outguess) indicate that, the proposed algorithm can distinguish F5-like stego images reliably from multi-class stego images generated by the steganography mentioned above. Furthermore, even if the types of some detected stego images are unknown, the proposed algorithm can still recognize F5-like stego images correctly with high accuracy.