• Title/Summary/Keyword: Image Feature

Search Result 3,610, Processing Time 0.026 seconds

Development of vision system for quality inspection of automotive parts and comparison of machine learning models (자동차 부품 품질검사를 위한 비전시스템 개발과 머신러닝 모델 비교)

  • Park, Youngmin;Jung, Dong-Il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.409-415
    • /
    • 2022
  • In computer vision, an image of a measurement target is acquired using a camera. And feature values, vectors, and regions are detected by applying algorithms and library functions. The detected data is calculated and analyzed in various forms depending on the purpose of use. Computer vision is being used in various places, especially in the field of automatically recognizing automobile parts or measuring the quality. Computer vision is being used as the term machine vision in the industrial field, and it is connected with artificial intelligence to judge product quality or predict results. In this study, a vision system for judging the quality of automobile parts was built, and the results were compared by applying five machine learning classification models to the produced data.

Study for Classification of Facial Expression using Distance Features of Facial Landmarks (얼굴 랜드마크 거리 특징을 이용한 표정 분류에 대한 연구)

  • Bae, Jin Hee;Wang, Bo Hyeon;Lim, Joon S.
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.613-618
    • /
    • 2021
  • Facial expression recognition has long been established as a subject of continuous research in various fields. In this paper, the relationship between each landmark is analyzed using the features obtained by calculating the distance between the facial landmarks in the image, and five facial expressions are classified. We increased data and label reliability based on our labeling work with multiple observers. In addition, faces were recognized from the original data and landmark coordinates were extracted and used as features. A genetic algorithm was used to select features that are relatively more helpful for classification. We performed facial recognition classification and analysis with the method proposed in this paper, which shows the validity and effectiveness of the proposed method.

A Computerized Doughty Predictor Framework for Corona Virus Disease: Combined Deep Learning based Approach

  • P, Ramya;Babu S, Venkatesh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2018-2043
    • /
    • 2022
  • Nowadays, COVID-19 infections are influencing our daily lives which have spread globally. The major symptoms' of COVID-19 are dry cough, sore throat, and fever which in turn to critical complications like multi organs failure, acute respiratory distress syndrome, etc. Therefore, to hinder the spread of COVID-19, a Computerized Doughty Predictor Framework (CDPF) is developed to yield benefits in monitoring the progression of disease from Chest CT images which will reduce the mortality rates significantly. The proposed framework CDPF employs Convolutional Neural Network (CNN) as a feature extractor to extract the features from CT images. Subsequently, the extracted features are fed into the Adaptive Dragonfly Algorithm (ADA) to extract the most significant features which will smoothly drive the diagnosing of the COVID and Non-COVID cases with the support of Doughty Learners (DL). This paper uses the publicly available SARS-CoV-2 and Github COVID CT dataset which contains 2482 and 812 CT images with two class labels COVID+ and COVI-. The performance of CDPF is evaluated against existing state of art approaches, which shows the superiority of CDPF with the diagnosis accuracy of about 99.76%.

A Novel Transfer Learning-Based Algorithm for Detecting Violence Images

  • Meng, Yuyan;Yuan, Deyu;Su, Shaofan;Ming, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1818-1832
    • /
    • 2022
  • Violence in the Internet era poses a new challenge to the current counter-riot work, and according to research and analysis, most of the violent incidents occurring are related to the dissemination of violence images. The use of the popular deep learning neural network to automatically analyze the massive amount of images on the Internet has become one of the important tools in the current counter-violence work. This paper focuses on the use of transfer learning techniques and the introduction of an attention mechanism to the residual network (ResNet) model for the classification and identification of violence images. Firstly, the feature elements of the violence images are identified and a targeted dataset is constructed; secondly, due to the small number of positive samples of violence images, pre-training and attention mechanisms are introduced to suggest improvements to the traditional residual network; finally, the improved model is trained and tested on the constructed dedicated dataset. The research results show that the improved network model can quickly and accurately identify violence images with an average accuracy rate of 92.20%, thus effectively reducing the cost of manual identification and providing decision support for combating rebel organization activities.

Impact of Economic Value in the O2O Distribution Channel on Brand Attractiveness and Performance

  • Seok-Beom, CHOI;Hye-Young, JOO;Hokey, MIN;Qaiser Farooq, DAR;Young-Hyo, AHN
    • Journal of Distribution Science
    • /
    • v.21 no.2
    • /
    • pp.7-20
    • /
    • 2023
  • Purpose: With the unique feature of O2O, consumers are now able to check the profile of the services and products online and then consume them in offline venues or vice versa. This study provides motivation and practical implications about online-to-offline (O2O) distribution channels and investigates the relationship between economic values, service consistency and brand identity attractiveness in the O2O distribution channel. Then identify the impact of brand identity attractiveness on the performance (reputation and reuse intention). Research design, data, and methodology: Structural equation modeling (SEM) has been used to investigate the relationship between economic value and brand identity attractiveness, which affects the reputation and reuse intention of services in O2O. Results: Empirical results show the positive and significant impact of economic value and service consistency on brand identity attractiveness which results the positive and significant impact on performance (reputation and reuse intention) in O2O. Conclusion: In the O2O distribution channel, economic value is an important aspect for the attractive image and brand identity. On the other side, brand identity attractiveness is important for the bright future of O2O services, continuous growth, achieving the distinct goal, keeping good promises with customers, and a better reputation of O2O services in distribution channels.

Hierarchial Encryption System Using Two-Step Phase-Shifting Digital Holography Technology Based on XOR and Scramble Operations (XOR 및 스크램블 연산 기반 2단계 위상 천이 디지털 홀로그래피 기술을 이용한 계층적 암호화 시스템)

  • Kim, Cheolsu
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.983-990
    • /
    • 2022
  • In this paper, we implemented a hierarchical encryption system using two-step phase-shifting digital holography(PSDH) technology based on XOR and scramble operations. The proposed encryption system is a system that authenticates access through the issuance of an encryption key for access to individual laboratories, department offices, and universities. In the encryption process, we proposed a double encryption method using XOR and scramble operation with digital technology and two-step phase-shifting digital holography with optical technology. In the two-step PSDH process, an new method of determining the reference wave intensity without measuring it by using random common object image gererated from digital encryption process was also proposed. In the decryption process, the process is performed in the reverse order of encryption process. And only when the various key information used in the encryption process is correct, the encrypted information can be decrypted, so that the user can access the desired place. That is, there is a feature that can hierarchically control the space that can be accessed according to the type of key issued in the proposed encryption system. Through the computer simulation, the feasibility of the proposed hierarchical encryption system was confirmed.

PathGAN: Local path planning with attentive generative adversarial networks

  • Dooseop Choi;Seung-Jun Han;Kyoung-Wook Min;Jeongdan Choi
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1004-1019
    • /
    • 2022
  • For autonomous driving without high-definition maps, we present a model capable of generating multiple plausible paths from egocentric images for autonomous vehicles. Our generative model comprises two neural networks: feature extraction network (FEN) and path generation network (PGN). The FEN extracts meaningful features from an egocentric image, whereas the PGN generates multiple paths from the features, given a driving intention and speed. To ensure that the paths generated are plausible and consistent with the intention, we introduce an attentive discriminator and train it with the PGN under a generative adversarial network framework. Furthermore, we devise an interaction model between the positions in the paths and the intentions hidden in the positions and design a novel PGN architecture that reflects the interaction model for improving the accuracy and diversity of the generated paths. Finally, we introduce ETRIDriving, a dataset for autonomous driving, in which the recorded sensor data are labeled with discrete high-level driving actions, and demonstrate the state-of-the-art performance of the proposed model on ETRIDriving in terms of accuracy and diversity.

Binary Classification of Hypertensive Retinopathy Using Deep Dense CNN Learning

  • Mostafa E.A., Ibrahim;Qaisar, Abbas
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.98-106
    • /
    • 2022
  • A condition of the retina known as hypertensive retinopathy (HR) is connected to high blood pressure. The severity and persistence of hypertension are directly correlated with the incidence of HR. To avoid blindness, it is essential to recognize and assess HR as soon as possible. Few computer-aided systems are currently available that can diagnose HR issues. On the other hand, those systems focused on gathering characteristics from a variety of retinopathy-related HR lesions and categorizing them using conventional machine-learning algorithms. Consequently, for limited applications, significant and complicated image processing methods are necessary. As seen in recent similar systems, the preciseness of classification is likewise lacking. To address these issues, a new CAD HR-diagnosis system employing the advanced Deep Dense CNN Learning (DD-CNN) technology is being developed to early identify HR. The HR-diagnosis system utilized a convolutional neural network that was previously trained as a feature extractor. The statistical investigation of more than 1400 retinography images is undertaken to assess the accuracy of the implemented system using several performance metrics such as specificity (SP), sensitivity (SE), area under the receiver operating curve (AUC), and accuracy (ACC). On average, we achieved a SE of 97%, ACC of 98%, SP of 99%, and AUC of 0.98. These results indicate that the proposed DD-CNN classifier is used to diagnose hypertensive retinopathy.

Design of an efficient learning-based face detection system (학습기반 효율적인 얼굴 검출 시스템 설계)

  • Kim Hyunsik;Kim Wantae;Park Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

Pretext Task Analysis for Self-Supervised Learning Application of Medical Data (의료 데이터의 자기지도학습 적용을 위한 pretext task 분석)

  • Kong, Heesan;Park, Jaehun;Kim, Kwangsu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.38-40
    • /
    • 2021
  • Medical domain has a massive number of data records without the response value. Self-supervised learning is a suitable method for medical data since it learns pretext-task and supervision, which the model can understand the semantic representation of data without response values. However, since self-supervised learning performance depends on the expression learned by the pretext-task, it is necessary to define an appropriate Pretext-task with data feature consideration. In this paper, to actively exploit the unlabeled medical data into artificial intelligence research, experimentally find pretext-tasks that suitable for the medical data and analyze the result. We use the x-ray image dataset which is effectively utilizable for the medical domain.

  • PDF