• Title/Summary/Keyword: Image Enhancement Parameters

Search Result 64, Processing Time 0.026 seconds

Design of External Coil System for Reducing Artifact of MR Image due to Implantable Hearing Aid (이식형 보청기에 의한 자기공명 영상의 인공음영 축소를 위한 외부 코일 시스템 설계)

  • Ahn, Hyoung Jun;Lim, Hyung-Gyu;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.375-385
    • /
    • 2016
  • Recently, several implantable hearing aids such as cochlear implant, middle ear implant, etc., which have a module receiving power and signal from outside the body, are frequently used to treat the hearing impaired patients. Most of implantable hearing aids are adopted permanent magnet pairs to couple between internal and external devices for the enhancement of power transmission. Generally, the internal device which containing the magnet in the center of receiving coil is implanted under the skin of human temporal bone. In case of MRI scanning of a patient with the implantable hearing aid, however, homogeneous magnetic fields of the MRI might be interfered by the implanted magnet. For the above reasons, the MR image is degraded by large area of artifact, so that diagnostics are almost impossible in deteriorated region. In this paper, we proposed an external coil system that can reduce the artifact of MR image due to the internal coupling magnet. By finite element analysis estimating area of MR artifact according to varying current and shape of the external coil, optimal coil parameters were extracted. Finally, the effectiveness of the proposed external coil system was verified by confirming the artifact at real MRI scan.

Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm (접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법)

  • 고동환;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 1998
  • This paper deals with a problem occuring in recognition of tactile images due to the effects of imposed force at a me urement moment. Tactile image of a contact surface, used for recognition of the surface type, varies depending on the forces imposed so that a false recognition may result in. This paper fuzzifies two parameters of the contour of a tactile image with the membership function formed by considering the imposed force. Two fuzzifed paramenters are fused by the average Minkowski's dist; lnce. The proposed algorithm was implemented on the multisensor system cnmposed of an optical tact le sensor and a 6 axes forceltorque sensor. By the experiments, the proposed algorithm has shown average recognition ratio greater than 869% over all imposed force ranges and object models which is about 14% enhancement comparing to the case where only the contour information is used. The pro- ~oseda lgorithm can be used for end-effectors manipulating a deformable or fragile objects or for recognition of 3D objects by implementing on multi-fingered robot hand.

  • PDF

Patients with brain metastases the usefulness of contrast-enhanced FLAIR images after delay (뇌전이 환자의 조영 증강 후 지연 FLAIR 영상의 유용성)

  • Byun, Jae-Hu;Park, Myung-Hwan;Lee, Jin-Wan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • Purpose: FLAIR image is beneficial for the diagnosis of various bran diseases including ischemic CVS, brain tumors and infections. However the border between the legion of brain metastasis and surrounding edema may not be clear. Therefore, this study aims to investigate the practical benefits of delayed imaging by comparing the image from a patient with brain metastasis before a contrast enhancement and the image 10 minutes after a contrast enhancement. Materials and methods: Of the 92 people who underwent MRI brain metastases in suspected patients 13 people in three patients there is no video to target the 37 people confirmed cases, and motion artifacts brain metastases in our hospital June-December 2013, 18 people measurement position except for the three incorrect patient (male: 11 people, female: 7 people, average age: 60 years) in the target, test equipment, 3.0T MR System (ACHIEVA Release, Philips, I was 8ChannelSENSE Head Coil use Best, and the Netherlands). TR 11000 ms, TE 125 ms, TI2800 ms, Slice Thickness 5 mm, gap 5 mm, is a Slice number 21, the parameters of the 3D FFE, T2 FLAIR variable that was used to test, TR 8.1 ms, TE 3.7 ms, Slice number 240 I set to. The experiment was conducted by acquiring the FLAIR prior to contrast enhancement (heretofore referred to as Pre FLAIR), and acquiring the 3D FFE CE five minutes after the contrast enhancement, and recomposing the images in an axial plane of S/T 3mm, G 0mm (heretofore referred to as MPR TRA CE). Using the FLAIR 10 minutes after the contrast enhancement (heretofore referred to as Post FLAIR) and Pi-View, a retrospective study was conducted. Using MRIcro on the image of a patient confirmed for his diagnosis, the images before and after the contrast media, as well as the CNR and SNR of the MPR TRA CE images of the lesion and the site absent of lesion were compared and analyzed using a one-way analysis of variance. Results: CNR for Pre FLAIR and Post FLAIR were 34.35 and 60.13, respectively, with MPR TRA CE at 23.77 showing no significant difference (p<0.050). Post-experiment analysis shows a difference between Pre FLAIR and Post FLAIR in terms of CNR (p<0.050), but no difference in CNR between Post FLAIR and MPR TRA CE (p>0.050), indicating that the contrast media had an effect only on Pre FLAIR and Post FLAIR. The SNR for the normal site Pre FLAIR was 106.43, and for the lesion site 140.79. Post FLAIR for the normal site was 107.79, and for the lesion site 167.91. MPR TRA CE for the normal site was 140.23 and for the lesion site 183.19, showing significant difference (p<0.050), and post-experiment analysis shows that there was a difference in SNR only on the lesion sites for Pre FLAIR and Post FLAIR (p<0.050). There was no difference in SNR between the normal site and lesion site for Post FLAIR and MPR TRA CE, indicating no effect from the contrast media (p>0.050). Conclusions: This experiment shows that Post FLAIR has a higher contrast than Pre FLAIR, and a higher SNR for lesions, It was not not statistically significant and MPR TRA CE but CNR came out high. Inspection of post-contrast which is used in a high magnetic field is frequently used images of 3D T1 but, since the signal of the contrast medium and the blood flow is included, this method can be diagnostic accuracy is reduced, it is believed that when used in combination with Post FLAIR, and that can provide video information added to the diagnosis of brain metastases.

  • PDF

Clinical image quality evaluation for panoramic radiography in Korean dental clinics

  • Choi, Bo-Ram;Choi, Da-Hye;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Bae, Kwang-Hak;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.42 no.3
    • /
    • pp.183-190
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods: Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results: A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion: Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively.

Free-Breathing Motion-Corrected Single-Shot Phase-Sensitive Inversion Recovery Late-Gadolinium-Enhancement Imaging: A Prospective Study of Image Quality in Patients with Hypertrophic Cardiomyopathy

  • Min Jae Cha;Iksung Cho;Joonhwa Hong;Sang-Wook Kim;Seung Yong Shin;Mun Young Paek;Xiaoming Bi;Sung Mok Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1044-1053
    • /
    • 2021
  • Objective: Motion-corrected averaging with a single-shot technique was introduced for faster acquisition of late-gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging while free-breathing. We aimed to evaluate the image quality (IQ) of free-breathing motion-corrected single-shot LGE (moco-ss-LGE) in patients with hypertrophic cardiomyopathy (HCM). Materials and Methods: Between April and December 2019, 30 patients (23 men; median age, 48.5; interquartile range [IQR], 36.5-61.3) with HCM were prospectively enrolled. Breath-held single-shot LGE (bh-ss-LGE) and free-breathing moco-ss-LGE images were acquired in random order on a 3T MR system. Semi-quantitative IQ scores, contrast-to-noise ratios (CNRs), and quantitative size of myocardial scar were assessed on pairs of bh-ss-LGE and moco-ss-LGE. The mean ± standard deviation of the parameters was obtained. The results were compared using the Wilcoxon signed-rank test. Results: The moco-ss-LGE images had better IQ scores than the bh-ss-LGE images (4.55 ± 0.55 vs. 3.68 ± 0.45, p < 0.001). The CNR of the scar to the remote myocardium (34.46 ± 11.85 vs. 26.13 ± 10.04, p < 0.001), scar to left ventricle (LV) cavity (13.09 ± 7.95 vs. 9.84 ± 6.65, p = 0.030), and LV cavity to remote myocardium (33.12 ± 15.53 vs. 22.69 ± 11.27, p < 0.001) were consistently greater for moco-ss-LGE images than for bh-ss-LGE images. Measurements of scar size did not differ significantly between LGE pairs using the following three different quantification methods: 1) full width at half-maximum method; 23.84 ± 12.88% vs. 24.05 ± 12.81% (p = 0.820), 2) 6-standard deviation method, 15.14 ± 10.78% vs. 15.99 ± 10.99% (p = 0.186), and 3) 3-standard deviation method; 36.51 ± 17.60% vs. 37.50 ± 17.90% (p = 0.785). Conclusion: Motion-corrected averaging may allow for superior IQ and CNRs with free-breathing in single-shot LGE imaging, with a herald of free-breathing moco-ss-LGE as the scar imaging technique of choice for clinical practice.

Image Histogram Equalization Based on Gaussian Mixture Model (가우시안 혼합 모델 기반의 영상 히스토그램 평활화)

  • Jun, Mi-Jin;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.748-760
    • /
    • 2012
  • In case brightness distribution is concentrated in a region, it is difficult to classify the image features. To solve this problem, we apply global histogram equalization and local histogram equalization to images. In case of global histogram equalization, it can be too bright or dark because it doesn't consider the density of brightness distribution. Thus, it is difficult to enhance the local contrast in the images. In case of local histogram equalization, it can produce unexpected blocks in the images. In order to enhance the contrast in the images, this paper proposes a local histogram equalization based on the Gaussian Mixture Models(GMMs) in regions of histogram. Mean and variance parameters in each regions is updated EM-algorithm repeatedly and then ranges of equalization on each regions. The experimental results performed with image of various contrasts show that the proposed algorithm is better than the global histogram equalization.

Chemotherapy-Related Cardiac Dysfunction: Quantitative Cardiac Magnetic Resonance Image Parameters and Their Prognostic Implications

  • Jinhee Kim;Yoo Jin Hong;Kyunghwa Han;Jin Young Kim;Hye-Jeong Lee;Jin Hur;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.838-848
    • /
    • 2023
  • Objective: To quantitatively analyze the cardiac magnetic resonance imaging (CMR) characteristics of chemotherapy-related cardiac dysfunction (CTRCD) and explore their prognostic value for major adverse cardiovascular events (MACE). Materials and Methods: A total of 145 patients (male:female = 76:69, mean age = 63.0 years) with cancer and heart failure who underwent CMR between January 2015 and January 2021 were included. CMR was performed using a 3T scanner (Siemens). Biventricular functions, native T1 T2, extracellular volume fraction (ECV) values, and late gadolinium enhancement (LGE) of the left ventricle (LV) were compared between those with and without CTRCD. These were compared between patients with mild-to-moderate CTRCD and those with severe CTRCD. Cox proportional hazard regression analysis was used to evaluate the association between the CMR parameters and MACE occurrence during follow-up in the CTRCD patients. Results: Among 145 patients, 61 had CTRCD and 84 did not have CTRCD. Native T1, ECV, and T2 were significantly higher in the CTRCD group (1336.9 ms, 32.5%, and 44.7 ms, respectively) than those in the non-CTRCD group (1303.4 ms, 30.5%, and 42.0 ms, respectively; P = 0.013, 0.010, and < 0.001, respectively). They were not significantly different between patients with mild-to-moderate and severe CTRCD. Indexed LV mass was significantly smaller in the CTRCD group (65.0 g/m2 vs. 78.9 g/mm2; P < 0.001). According to the multivariable Cox regression analysis, T2 (hazard ratio [HR]: 1.14, 95% confidence interval [CI]: 1.01-1.27; P = 0.028) and quantified LGE (HR: 1.07, 95% CI: 1.01-1.13; P = 0.021) were independently associated with MACE in the CTRCD patients. Conclusion: Quantitative parameters from CMR have the potential to evaluate myocardial changes in CTRCD. Increased T2 with reduced LV mass was demonstrated in CTRCD patients even before the development of severe cardiac dysfunction. T2 and quantified LGE may be independent prognostic factors for MACE in patients with CTRCD.

Listener Auditory Perception Enhancement using Virtual Sound Source Design for 3D Auditory System

  • Kang, Cheol Yong;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • When a virtual sound source for 3D auditory system is reproduced by a linear loudspeaker array, listeners can perceive not only the direction of the source, but also its distance. Control over perceived distance has often been implemented via the adjustment of various acoustic parameters, such as loudness, spectrum change, and the direct-to-reverberant energy ratio; however, there is a neglected yet powerful cue to the distance of a nearby virtual sound source that can be manipulated for sources that are positioned away from the listener's median plane. This paper address the problem of generating binaural signals for moving sources in closed or in open environments. The proposed perceptual enhancement algorithm composed of three main parts is developed: propagation, reverberation and the effect of the head, torso and pinna. For propagation the effect of attenuation due to distance and molecular air-absorption is considered. Related to the interaction of sounds with the environment, especially in closed environments is reverberation. The effects of the head, torso and pinna on signals that arrive at the listener are also objectives of the consideration. The set of HRTF that have been used to simulate the virtual sound source environment for 3D auditory system. Special attention has been given to the modelling and interpolation of HRTFs for the generation of new transfer functions and definition of trajectories, definition of closed environment, etc. also be considered for their inclusion in the program to achieve realistic binaural renderings. The evaluation is implemented in MATLAB.

Image Enhancement Algorithm in Imaging Systems for Electronic Photography (전자사진용 화상시스템의 화상개선 알고리즘)

  • 박용주;김지홍
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.133-145
    • /
    • 2002
  • A study on electronic imaging system with silver halide photography emulation by a parametric approach will be introduced. The study contains the comparison analysis between silver halide imaging process and electronic imaging process, the characterization of the detailed process in those imaging chains, such as exposure, developing, photographic print and the other photographic and digital process. We investigated the characteristic curve between optical density and the amount of exposure in silver halide and digital photography systems. Under wide range of exposure condition, several sensitometric parameters were obtained via studio and outdoor photographic experiments with conventional photography and a digital camera. whose experimental results will be shown. Finally, the comparison between electronic imaging and conventional photography via silver halide photography emulation and modeling the silver halide process wi13 be discussed.

  • PDF

Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm

  • Benammar, Abdessalem;Drai, Redouane
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1753-1761
    • /
    • 2014
  • Due to the inherent inhomogeneous and anisotropy nature of the composite materials, the detection of internal defects in these materials with non-destructive techniques is an important requirement both for quality checks during the production phase and in service inspection during maintenance operations. The estimation of the time-of-arrival (TOA) and/or time-of-flight (TOF) of the ultrasonic echoes is essential in ultrasonic non-destructive testing (NDT). In this paper, we used split-spectrum processing (SSP) combined with matching pursuit signal decomposition (MPSD) to develop a dedicated ultrasonic detection system. SSP algorithm is used for Signal-to-Noise Ratio (SNR) enhancement, and the MPSD algorithm is used to decompose backscattered signals into a linear expansion of chirplet echoes and estimate the chirplet parameters. Therefore, the combination of SSP and MPSD (SSP-MPSD) presents a powerful technique for ultrasonic NDT. The SSP algorithm is achieved by using Gaussian band pass filters. Then, MPSD algorithm uses the Maximum Likelihood Estimation. The good performance of the proposed method is experimentally verified using ultrasonic traces acquired from three specimens of carbon fibre reinforced polymer multi-layered composite materials (CFRP).