• Title/Summary/Keyword: Image Detector

Search Result 920, Processing Time 0.027 seconds

Photon-counting digital holography

  • Hayasaki, Yoshio
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.165-166
    • /
    • 2009
  • A hologram was recorded with two-dimensional scanning of an optical fiber connected to a single-photon counting detector under ultra-weak illumination. The object image was clearly reconstructed in a computer from the hologram. The dependence of hologram quality on the illumination light intensity was estimated.

  • PDF

Verification, Variation and Application of Image SNR Distribution based upon Nonlinear Image Sensor Model using Simulation (시뮬레이션을 이용한 위성용 카메라 비선형 모델의 영상 신호-잡음비(Image SNR) 분포도 검증/특성 및 활용)

  • Myung, Hwan-Chun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.160-169
    • /
    • 2009
  • In the paper, the Image SNR(Signal-to-Noise) distribution proposed in [1] is reviewed from the three points of views: verification, variation, and application of the distribution. First, the proposed Image SNR distribution is verified through the noise-based simulation over a 2D image detector. Second, its variation over the linear/nonlinear gains shows that the noise-effect itself cannot explain every reason for the degraded Image SNR distribution. Third, through the application to optimal selection of the operation parameters, the usefulness of the proposed distribution is clarified.

  • PDF

Simulation Study for Feature Identification of Dynamic Medical Image Reconstruction Technique Based on Singular Value Decomposition (특이값분해 기반 동적의료영상 재구성기법의 특징 파악을 위한 시뮬레이션 연구)

  • Kim, Do-Hui;Jung, YoungJin
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.119-130
    • /
    • 2019
  • Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.

Study of The Amorphous Selenium (a-Se) using 2-dimensional Device Simulator (2차원 소자 시뮬레이터를 이용한 비정질 셀레늄(a-Se) 분석)

  • Kim, Si-Hyoung;Kim, Chang-Man;Nam, Ki-Chang;Kim, Sang-Hee;Song, Kwang-Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.187-193
    • /
    • 2012
  • Digital X-ray image detector has been applied for medical and industrial fields. Photoconductors have been used to convert the X-ray energy to electrical signal on the direct digital X-ray image detector and amorphous selenium (a-Se) has been used as a photoconductor, normally. In this work, we use 2-dimensional device (2-D) simulator to study about physical phenomena in the a-Se, when we irradiate electromagnetic radiation (${\lambda}=486nm$) on the a-Se surface. We evaluate the electron-hole generation rate, electron-hole recombination rate, and electron/hole distribution in the a-Se using 2-D simulator. This simulator divides the device into triangle and calculates using interpolation method. This simulation method has been proposed for the first time and we expect that it will be applied for the development of digital X-ray image detector.

Design of Small-sized Scintillation Pixel Detector with a Light Guide made of the Same Material as the Scintillation Pixel (섬광 픽셀과 동일한 물질로 광가이드를 적용한 매우 작은 섬광 픽셀 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.523-529
    • /
    • 2023
  • In order to achieve excellent spatial resolution, very small scintillation pixels are used in detectors of positron emission tomography for small animals. However, by using these very small scintillation pixels, scintillation pixels at the edge of the array may overlap in a flood image. To solve this problem, a light guide capable of changing the distribution of light was used. Depending on the material of the light guide, the light spreading tendency is different, and accordingly, the presence or absence of overlapping is different depending on the material of the light guide used. In this study, instead of the conventional glass light guide, a detector using the same material as the scintillation pixel was designed. A scintillator light guide has a higher refractive index than a glass light guide, so the light spread is different. Flood images were acquired to evaluate the degree of separation of the scintillation pixels at the edge of the detector using the two light guides. The degree of separation was evaluated by calculating the distance between the center and the spatial resolution of the image of two scintillation pixels at the edge of the obtained flood image. As a result, when the scintillator light guide was used, better spatial resolution was shown, and the distance between centers of scintillation pixels was wider. When a detector is constructed using a scintillator light guide instead of a conventional glass light guide, it is possible to use a smaller scintillation pixel, thereby securing better spatial resolution.

Hierarchical Feature Based Block Motion Estimation for Ultrasound Image Sequences (초음파 영상을 위한 계층적 특징점 기반 블록 움직임 추출)

  • Kim, Baek-Sop;Shin, Seong-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.402-410
    • /
    • 2006
  • This paper presents a method for feature based block motion estimation that uses multi -resolution image sequences to obtain the panoramic images in the continuous ultrasound image sequences. In the conventional block motion estimation method, the centers of motion estimation blocks are set at the predetermined and equally spaced locations. This requires the large blocks to include at least one feature, which inevitably requires long estimation time. In this paper, we propose an adaptive method which locates the center of the motion estimation blocks at the feature points. This make it possible to reduce the block size while keeping the motion estimation accuracy The Harris-Stephen corner detector is used to get the feature points. The comer points tend to group together, which cause the error in the global motion estimation. In order to distribute the feature points as evenly as Possible, the image is firstly divided into regular subregions, and a strongest corner point is selected as a feature in each subregion. The ultrasound Images contain speckle patterns and noise. In order to reduce the noise artifact and reduce the computational time, the proposed method use the multi-resolution image sequences. The first algorithm estimates the motion in the smoothed low resolution image, and the estimated motion is prolongated to the next higher resolution image. By this way the size of search region can be reduced in the higher resolution image. Experiments were performed on three types of ultrasound image sequences. These were shown that the proposed method reduces both the computational time (from 77ms to 44ms) and the displaced frame difference (from 66.02 to 58.08).

Image Quality Improvement in Computed Tomography by Using Anisotropic 2-Dimensional Diffusion Based Filter (비등방성 2차원 확산 기반 필터를 이용한 전산화단층영상 품질 개선)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study was tried to remove the noise and improve the spatial resolution in the computed tomography (CT) by using anisotropic 2-dimensional (2D) diffusion based filter. We used 4-channel multi-detector CT and american association of physicists in medicine (AAPM) phantom was used for CT performance evaluation to evaluate the image quality. X-ray irradiation conditions for image acquisition was fixed at 120 kVp, 100 mAs and scanned 10 mm axis with ultra-high resolution. The improvement of anisotropic 2D diffusion filtering that we suggested firstly, increase the contrast of the image by using histogram stretching to the original image for 0.4%, and multiplying the individual pixels by 1.2 weight value, and applying the anisotropic diffusion filtering. As a result, we could distinguished five holes until 0.75 mm in the original image but, five holes until 0.40 mm in the image with improved anisotropic diffusion filter. The noise of the original image was 46.0, the noise of the image with improved anisotropic 2D diffusion filter was decreased to 33.5(27.2%). In conclusion improved anisotropic 2D diffusion filter that we proposed could remove the noise of the CT image and improve the spatial resolution.

A Study on the Quantitative Analysis Method through the Absorbed Dose and the Histogram in the Performance Evaluation of the Detector according to the Sensitivity Change of Auto Exposure Control(AEC) in DR(Digital Radiography) (DR(Digital Radiography)에서 자동노출제어장치의 감도변화에 따른 검출기 성능평가 시 흡수선량과 히스토그램을 통한 정량적 분석방법에 관한 연구)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.232-240
    • /
    • 2018
  • This study is to suggest a method to evaluate the detector performance using change of absorbed dose and histogram according to sensitivity change of Auto Exposure Control(AEC). The experiment site is skull, abdomen pelvis and the accuracy of the detector was evaluated by measuring the absorbed dose of the detector sensitivity S200, S400, S800, S1000. Also the dynamic range of the detector was evaluated through the histogram analysis. As a result, the absorbed dose decreased gradually as the sensitivity was set higher from S200 to S1000. And through the sensitivity histogram analysis, as the sensitivity of the skull is set higher, the amount of information at both ends of the histogram is lost. Abdomen and pelvis areas showed underflow phenomena in which the amount of information in the first part of the histogram was lost as the sensitivity was set higher. In conclusion, the detector accurately implemented the sensitivity change, but the dynamic range of the image due to the sensitivity change of the AEC due to the deterioration of the detector performance can not be realized properly and it was found that the evaluation through the absorbed dose and the histogram is useful when evaluating the performance of the detector.

Image Segmentation Using A Combined Segmentation Measure for Region-Based Coding (영역 기반 부호화를 위한 결합 분할 척도를 이용한 영상 분할)

  • Song, Kun-Woen;Kim, Kyeong-Man;Min, Gak;Lee, Chae-Soo;Nam, Jae-Yeal;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.518-528
    • /
    • 2001
  • In this paper, we firstly define a new combined segmentation measure and propose a segmentation algorithm using this measure. The combined segmentation measure is a weighted sum of intensity, motion, and a change segmentation measure that is extracted from the resulting image of the proposed change detector. The change segmentation measure is defined as an absolute change value difference between an pixel and its neighboring region from the eroded image, which results from morphological erosion filtering to eliminate many inaccurate components included in the resulting image of a conventional change detector. The change segmentation measure can be used as an efficient segmentation measure for the accurate segmentation of neighboring moving objects and static background regions. Therefore, the proposed combined segmentation measure can determine exact boundaries in the segmentation process of region-based coding even though the estimated motion vectors around the boundaries of moving objects and static background regions are inaccurate and the intensities around the boundaries are similar.

  • PDF

Noise Power Spectrum of Radiography Detectors: II. Measurement Based on the Spectrum Averaging (방사선 디텍터의 Noise Power Spectrum : II. Spectrum의 평균을 통한 측정)

  • Lee, Eunae;Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.63-69
    • /
    • 2017
  • In order to observe the noise property of the flat-panel digital radiography detector, measuring the normalized noise power spectrum (NNPS) from acquired x-ray images is conducted. However, the conventional NNPS measurement has an unstable property depending on the acquired image. Averaging the sample periodograms of the input image is usually performed to estimate the NNPS values and increasing the number of samples can provide a reliable NNPS measurement. In this paper, for a finite number of images, two measurement methods, which are based on averaging spectra, such as the image periodogram, are proposed and their performances are analyzed. Using x-ray images acquired from two types of radiography detectors, the two spectrum averaging methods are compared and it is shown that averaging spectra based on the maximal number of combinations of the image pairs provides the best performance in measuring NNPS.