KSII Transactions on Internet and Information Systems (TIIS)
/
제17권8호
/
pp.2053-2067
/
2023
This paper proposes two video quality assessment methods based on deep neural network. (i)The first method uses the IQF-CNN (convolution neural network based on image quality features) to build image quality assessment method. The LIVE image database is used to test this method, the experiment show that it is effective. Therefore, this method is extended to the video quality assessment. At first every image frame of video is predicted, next the relationship between different image frames are analyzed by the hysteresis function and different window function to improve the accuracy of video quality assessment. (ii)The second method proposes a video quality assessment method based on convolution neural network (CNN) and gated circular unit network (GRU). First, the spatial features of video frames are extracted using CNN network, next the temporal features of the video frame using GRU network. Finally the extracted temporal and spatial features are analyzed by full connection layer of CNN network to obtain the video quality assessment score. All the above proposed methods are verified on the video databases, and compared with other methods.
배아란 동물이나 식물과 같은 다세포 생물의 초기 단계를 의미한다. 배아의 단계에서 다세포 생물의 기초적인 체제가 결정되기 때문에 배아는 개체발생의 기구를 연구하는 중요한 연구대상이 된다. 생물학자들은 배아 연구를 위해 대용량의 배아 이미지 데이터를 소유하고 있으며, 이러한 대용량 데이터 중 원하는 이미지를 효율적으로 검색하기 위해서는 데이터 구조화가 필요하다. 데이터베이스 구조화를 위해 주로 사용되는 방법으로 계층적 클러스터링이 있다. 그러나 기존의 계층적 클러스터링 방법은 데이터베이스를 트리 형태로 구조화 하는 과정에서 클러스터의 크기와 클러스터 내의 객체 수를 동시에 고려하지 못하기 때문에 결과 클러스터링 트리가 경사 트리일 가능성이 매우 높다. 경사 트리인 경우 사용자가 원하는 이미지를 검색하기 위해 트리를 순회할 때 많은 시간이 걸린다. 따라서 본 논문에서는 대용량의 배아 이미지 데이터를 경사 되지 않으며 균형 상태에 가까운 트리 형태로 구조화하기 위한 방안을 제시한다. 제안하는 방안은 데이터베이스 내에 저장된 배아 이미지를 그래프로 변환하고 반복적으로 그래프 분할 알고리즘을 적용하여 클러스터를 생성한다. 이 때 클러스터의 크기와 클러스터 내의 객체 수를 동시에 고려하여 특정 클러스터의 크기가 지나치게 커지거나 객체 수가 많아지는 것을 방지한다. 실험을 통해서 제안하는 방안의 우수성을 규명하고 시각화 툴을 제공하여 사용자가 원하는 배아 이미지를 쉽게 찾을 수 있도록 돕는다.
Since the amount of digital image continues to grow in usage, users feel increased difficulty in finding specific images from the image collection. This paper proposes a novel image searching scheme that extracts the image feature using combination of Advanced SURF (Speed-Up Robust Feature) and DCD (Dominant Color Descriptor). The key point of this research is to provide a new feature extraction algorithm to improve the existing SURF method with removal of unnecessary feature in image retrieval, which can be adaptable to mobile system and efficiently run on the mobile environments. To evaluate the proposed scheme, we assessed the performance of simulation in term of average precision and F-score on two databases, commonly used in the field of image retrieval. The experimental results revealed that the proposed algorithm exhibited a significant improvement of over 14.4% in retrieval effectiveness, compared to OpenSURF. The main contribution of this paper is that the proposed approach achieves high accuracy and stability by using ASURF and DCD in searching for natural image on mobile platform.
Mobile image retrieval is one of the most exciting and fastest growing research fields in the area of multimedia technology. As the amount of digital contents continues to grow users are experiencing increasing difficulty in finding specific images in their image libraries. This paper proposes a new efficient and effective mobile image retrieval method that applies a weighted combination of color and texture utilizing spatial-color and second order statistics. The system for mobile image searches runs in real-time on an iPhone and can easily be used to find a specific image. To evaluate the performance of the new method, we assessed the iPhone simulations performance in terms of average precision and recall using several image databases and compare the results with those obtained using existing methods. Experimental trials revealed that the proposed descriptor exhibited a significant improvement of over 13% in retrieval effectiveness, compared to the best of the other descriptors.
오늘날 멀티미디어 정보의 양이 매우 빠른 속도로 증가함에 따라 멀티미디어 데이타베이스에 대한 효율적인 관리는 더욱 중요한 의미를 가지게 되었다. 게다가 영상과 같은 비 문자형태의 데이타에 대한 사용자들의 내용기반 검색욕구 증가로 인해 비디오 인덱싱에 대한 관심은 더욱 고조되고 있다. 따라서 본 논문에서는 우선적으로 분할된 샷 경계면에서 추출된 대표 프레임과 정지 영상 데이타베이스로부터 유사 영상과 유사 대표 프레임을 검색할 수 있는 환경을 제공한다. 우선적으로 영상에 의한 질의는 기존에 주로 사용되어온 색상 히스토그램방식을 탈피하여 본 논문에서 제안하는 CS와 GS방식을 이용하여 색상 및 방향성 정보도 고려하도록 설계하였다. 또한 얼굴에 의한 질의는 대표 프레임으로부터 얼굴 영역을 추출해 내고 얼굴의 경계선 값 및 쌍 직교 웨이블릿 변환에 의해 얻어진 2개의 특징값을 이용하여 유사 인물이 포함된 대표 프레임을 검색해 내도록 설계하였다. Abstract There is a rapid increase in the use of digital video information in recent years, it becomes more important to manage multimedia databases efficiently. There is a big concern about video indexing because users require content-based image retrieval. In this paper, we first propose query-by-image system environment which allows to retrieve similar images from the chosen representative frames or images from the image databases. This algorithm considers not only the discretized color histogram but also the proposed directional information called CS & GS method. Finally, we designe another query environment using query-by-face. In this system , user selects a people in the representative frame browser and then system extracts a face region from that frame. After that system retrieves similar representative frames using 2 features, edge information and biorthogonal wavelet transform.
Purpose: This study's objective was to investigate the effects of programs that improve adolescents' body image, using a systematic review and meta-analysis. Methods: A literature search was performed in eleven electronic databases, using preferred reporting items for systematic reviews and meta-analysis guidelines. Population characteristics, contents of the programs, and measured outcomes were systematically reviewed from 21 selected studies. To estimate the size of the effects, meta-analysis was conducted using Comprehensive Meta-Analysis software. Results: The contents of the programs that aimed to improve body image included physical, psychological, interpersonal, and sociocultural interventions. Sixteen studies were meta-analyzed to estimate the effect size of body-image improvement programs. Results showed that the program for body-image improvement had significant effects on body satisfaction (effect size [ES] = 0.56, 95% confidence interval [CI] = 0.23 to 0.89), and body dissatisfaction (ES = - 0.15, 95% CI = - 0.23 to - 0.08). Conclusion: The program for body image improvement in adolescents includes a combination of physical, psychological, interpersonal relationship, and socio-cultural dimensions. The program that seeks to improve body image appears to be effective at increasing body satisfaction, and at reducing body dissatisfaction in adolescents. Thus, it is necessary to develop and apply multidimensional programs for adolescents to have a positive body image.
The purpose of the study is to develop an integrated viewer which can display both text and image files on the Internet environment. Up to now, most viewers for full-text databases can be displayed documents only by image or graphic viewers. The newly developed system can compress document files in commercial word processors (e.g, 한글TM, WordTM, ExceITM, PowerpointTM, HunminJungumTM, ArirangTM, CADTM), as well as conventional TIFF image file in smaller size, which were converted into DVI(DeVice Independent) file format, and display them on computer screen. IDoc Viewer was evaluated to test its performance by user group, consisting of 5 system developers, 5 librarians, and 10 end-users. IDoc Viewer has been proved to be good or excellent at 20 out of 26 check lists.
The easily accessible handheld devices equipped with camera are widely available as common commodities. According to this trend, utilization of images is popular among common users for various purposes resulting in huge amount of images in local or network based storage systems. In this environment, identification of an image with a solid and effective manner is demanded in behalf of safe distribution and efficient management of images. The generated identifiers can be used as a file name in file systems or an index in image databases utilizing the uniqueness of the identifiers. In this paper, we propose a method that generates image identifiers using linear components in images. Some experiments of generation of identifiers are performed, and the results evaluate that the proposed method has feasible effectiveness.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권3호
/
pp.459-470
/
2013
The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권7호
/
pp.2359-2376
/
2022
With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.