본 논문에서는 곡물이나 광석 등의 원료들 중에서 양품 및 불량품을 검출하기 위해, Color CCD 카메라로 촬영한 원료영상에서 Mean-Shift 클러스터링 알고리즘과 단계별 병합 방법을 제안하고 있다. 먼저 원료 학습 영상에서 배경을 제거하고 영상 색 분포정도를 기준으로 모폴로지를 이용하여 영상의 전경맵을 얻는다. 전경맵 영상에 대해서 Mean-Shift 군집화 알고리즘을 적용하여 영상을 N개의 군집으로 나누고, 단계별로 위치 근접성, 색상대푯값 유사성을 비교하여 비슷한 군집끼리 통합한다. 이렇게 통합된 원료 객체는 영상채널마다의 연관관계를 반영할 수 있도록 RG/GB/BR의 2차원 컬러분포도로 표현한다. 원료 객체별로 변환된 2차원 컬러 분포도에서 분포의 주성분의 기울기와 타원들을 생성한다. 객체별 분포 타원은 테스트 원료 영상데이터에서 양품과 불량품을 검출하는 임계값이 된다. 본 논문에서 제안한 방법으로 다양한 원료영상에 실험한 결과, 기존 선별방식에 비해 사용자의 인위적 조작이 적고 정확한 원료 선별 결과를 얻을 수 있었다.
본 논문에서는 X-Ray 영상에서 용접한 부분의 기공이나 균열 등의 결함 영역을 추출하는 새로운 방법을 제안한다. 제안된 방법은 세라믹 X-Ray 영상에서 비등방성 확산 필터를 적용하여 영상의 잡음을 제거하고, 수직 및 수평 히스토그램을 각각 적용하여 용접 영역을 추출한 후, 최소 자승법을 적용하여 배경 밝기를 제거하고, 사다리꼴 형태의 Fuzzy Stretching기법을 적용하여 명암 값을 강조하여 결함 영역과 그 외의 영역간의 명암 대비를 강조한다. 그리고 Fuzzy C_Means 알고리즘을 적용하여 결함 영역을 세분화한 후, Fuzzy C_Means을 적용하여 생성된 클러스터들의 중심 명암 값을 이용하여 ${\alpha}_-cut$을 설정한 후에 임계구간을 구하고 영상을 이진화하여 최종적으로 결함 영역을 추출한다. 제안된 방법의 결함 추출 성능을 확인하기 위하여 세라믹 X-Ray 영상을 대상으로 실험한 결과, 기존의 방법보다 결함 영역이 정확히 추출되는 것을 확인할 수 있었다.
International journal of advanced smart convergence
/
제10권1호
/
pp.105-116
/
2021
In order to preserve the seeds of excellent Hanwoo(Korean traditional cattle) and secure quality competitiveness in the infinite competition with foreign imported beef, production of high-quality Hanwoo beef is absolutely necessary. %IMF (Intramuscular Fat Percentage) is one of the most important factors in evaluating the value of high-quality meat, although standards vary according to food culture and industrial conditions by country. Therefore, it is required to develop a %IMF estimation algorithm suitable for Hanwoo. In this study, we proposed a method of estimating %IMF of Hanwoo using CNN in ultrasound images. First, the proposed method classified the chemically measured %IMF into 10 classes using k-means clustering method to apply CNN. Next, ROI images were obtained at regular intervals from each ultrasound image and used for CNN training and estimation. The proposed CNN model is composed of three stages of convolution layer and fully connected layer. As a result of the experiment, it was confirmed that the %IMF of Hanwoo was estimated with an accuracy of 98.2%. The correlation coefficient between the estimated %IMF and the real %IMF by the proposed method is 0.97, which is about 10% better than the 0.88 of the previous method.
본 논문에서는 CCTV를 활용하여 K-means, Sobel-mask 기반의 윤곽선 검출 기법을 이용한 영상 속 미세먼지 측정 방법을 제안한다. 제안하는 알고리즘은 CCTV 카메라를 이용하여 이미지를 수집하고 관심영역을 통해 이미지 범위를 지정한다. K-means 알고리즘을 적용하여 군집화가 완료되면 Sobel-mask를 통해 윤곽선을 검출하고 윤곽선 강도를 측정하며, 측정된 데이터를 바탕으로 미세먼지의 농도를 파악한다. 제안하는 방법은 대각선 측정에 장점을 가지는 Sobel-mask의 특성을 활용하여 산맥의 윤곽선을 추출하고 실험 결과로 미세먼지 농도에 따른 검출의 차이를 보여준다.
International Journal of Advanced Culture Technology
/
제10권2호
/
pp.240-245
/
2022
Because of the importance of the information, encryption algorithms are heavily used. Raw data is encrypted and secure, but problems arise when the key for decryption is exposed. In particular, large-scale Internet sites such as Facebook and Amazon suffer serious damage when user data is exposed. Recently, research into a new fourth-generation encryption technology that can protect user-related data without the use of a key required for encryption is attracting attention. Also, data clustering technology using encryption is attracting attention. In this paper, we try to reduce key exposure by using homomorphic encryption. In addition, we want to maintain privacy through similarity measurement. Additionally, holistic similarity measurements are time-consuming and expensive as the data size and scope increases. Therefore, Min-Hash has been studied to efficiently estimate the similarity between two signatures Methods of measuring similarity that have been studied in the past are time-consuming and expensive as the size and area of data increases. However, Min-Hash allowed us to efficiently infer the similarity between the two sets. Min-Hash is widely used for anti-plagiarism, graph and image analysis, and genetic analysis. Therefore, this paper reports privacy using homomorphic encryption and presents a model for efficient similarity measurement using Min-Hash.
Journal of information and communication convergence engineering
/
제21권4호
/
pp.287-293
/
2023
With the rapid development of domestic and international over-the-top markets, a large amount of video content is being created. As the volume of video content increases, consumers tend to increasingly check data concerning the videos before watching them. To address this demand, video summaries in the form of plot descriptions, thumbnails, posters, and other formats are provided to consumers. This study proposes an approach that automatically generates posters to effectively convey video content while reducing the cost of video summarization. In the automatic generation of posters, face recognition and clustering are used to gather and classify character data, and keyframes from the video are extracted to learn the overall atmosphere of the video. This study used the facial data of the characters and keyframes as training data and employed technologies such as DreamBooth, a text-to-image generation model, to automatically generate video posters. This process significantly reduces the time and cost of video-poster production.
수자원의 계절적 편중이 심한 한반도에서 농업용 저수지는 이를 효과적으로 유지 및 관리하기 위한 필수적인 구조물이다. 저수지 모니터링을 위한 수단으로 광학 및 합성개구레이더(Synthetic Aperture Radar, SAR) 위성영상이 활용되고 있으나, 광학영상은 기상현상에 의한 간섭이 심하다는 한계점이 존재하며, SAR 영상은 짙은 식생에서 일어나는 다중 산란 및 노이즈에 의한 오탐지 및 미탐지가 발생하기 쉽다. 이에 본 연구에서는 광학 영상과 SAR 영상의 융합을 통해 저수지 수체 탐지 정확도를 높이고 상호보완적 작용에 대해 정량적으로 분석하고자 하였다. 경기도 이동저수지, 충청남도 천태 저수지를 대상으로, 국내 고해상도 위성인 차세대중형위성 1호, 다목적실용위성 3호 및 3A호, 그리고 유럽우주국의 Sentinel-2 영상 기반 Normalized Difference Water Index (NDWI)와 SAR 탑재 위성인 Sentinel-1 단일 영상에 비지도학습 기법인 K-means 클러스터링 기법을 사용하여 수체를 탐지하고, NDWI-SAR 후방산란계수로 이루어진 2-D grid space에 동일 기법을 활용하여 정확도의 향상 정도를 파악하였다. 전반적인 정확도는 다목적실용위성이 가장 높은 것으로 나타났으며(두 저수지 모두 0.98), 이후 Sentinel-1(두 저수지 모두 0.93), Sentinel-2(이동: 0.83, 천태: 0.97), 차세대중형위성(이동: 0.69, 천태: 0.78) 순서로 감소하였다. 천태저수지에서 2-D K-means 클러스터링 기법을 적용한 결과 차세대중형위성의 수체탐지 정확도는 약 85%의 정밀도 향상과 14%의 재현율 감소와 함께 약 22% 향상되었으며(정확도 약 0.95), 다목적실용위성 및 Sentinel-2의 수체탐지 정밀도는 3-5% 향상되었고, 재현율은 4-7% 감소하였다. 추후 차세대중형위성 5호인 수자원위성 등 고해상도 SAR 위성과 이를 활용할 수 있는 고도화된 영상 융합기술, 수체 탐지 기술이 개발된다면 국내 수자원에 대한 매우 정확한 모니터링이 가능할 것으로 기대된다.
이미지 분류에서 딥러닝 모형을 사용하는 가장 큰 이유는 이미지의 전체적인 정보에서 각 지역 특징을 추출하여 서로의 관계를 고려할 수 있기 때문이다. 하지만 이미지의 지역 특징이 없는 감정 이미지 데이터는 CNN 모델이 적합하지 않을 수 있다. 이러한 감정 이미지 분류의 어려움을 해결하기 위하여 매년 많은 연구자들이 감정 이미지에 적합한 CNN기반 아키텍처를 제시하고 있다. 색깔과 사람 감정간의 관계에 대한 연구들도 수행되었으며, 색깔에 따라 다른 감정이 유도된다는 결과들이 도출되었다. 딥러닝을 활용한 연구에서도 색깔정보를 활용하여 이미지 감성분류에 적용하는 연구들이 있어왔으며, 이미지만을 가지고 분류 모형을 학습한 경우보다 이미지의 색깔 정보를 추가로 활용한 경우가 이미지 감성 분류 정확도를 더 높일 수 있었다. 본 연구는 사람이 이미지의 감정을 분류하는 기준 중 많은 부분을 차지하는 색감을 이용하여 이미지 감성 분류 정확도를 향상시키는 방안을 제안한다. 이미지의 RGB 값에 K 평균 군집화 방안을 적용하여 이미지를 대표하는 색을 추출하여, 각 감성 클래스 별 해당 색깔이 나올 확률을 가중치 식으로 변형 후 CNN 모델의 최종 Layer에 적용하는 이-단계 학습방안을 구현하였다. 이미지 데이터는 6가지 감정으로 분류되는 Emotion6와 8가지 감정으로 분류되는 Artphoto를 사용하였다. 학습에 사용한 CNN 모델은 Densenet169, Mnasnet, Resnet101, Resnet152, Vgg19를 사용하였으며, 성능 평가는 5겹 교차검증으로 CNN 모델에 이-단계 학습 방안을 적용하여 전후 성과를 비교하였다. CNN 아키텍처만을 활용한 경우보다 색 속성에서 추출한 정보를 함께 사용하였을 때 더 좋은 분류 정확도를 보였다.
최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.
최근 수년간 얼굴인식에 관한 많은 알고리즘이 개발되었고 그 대다수가 view와 투사에 기초한 알고리즘이었다. 본 논문에서의 투사는 비단 직교 기저상에 영상을 투사하는 것으로 국한하지 않고 영상 화소값을 변환하는 일반적인 선형 변환으로써 상관관계, 주성분 분석, 클러스트링, gray scale 투사, 그리고 추적 필터매칭을 포함한다. 본 연구에서는 FERET 데이터베이스 상의 얼굴 영상을 평가한 알고리즘들을 세부적으로 분석하고자 한다. 투사에 기초한 알고리즘은 3단계로 구성된다. 첫 번째 단계는 off-line상에서 행하며 알고리즘 설계자에 의해 새로운 기저가 설정되거나 또는 학습을 통해 새로운 기저를 결정한다. 두 번째 단계는 on-line상에서 행해지며 영상을 설정된 새로운 기저상에 투사한다. 세 번째 단계는 on-line상에서 행해지며 영상내의 얼굴은 가장 인접한 이웃 분류자로 인식된다. 대부분의 평가 방법들은 단일 gallery 상에서의 성능 평가가 이루어짐으로써 알고리즘 성능을 충분히 측정하지 못하는 반면 본 연구에서는 독립된 galley들의 집합을 구성함으로써 각각의 다른 galley상에서 가지는 변화와 이들의 상대적 성능을 평가한\ulcorner.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.