• 제목/요약/키워드: Image Classifier

검색결과 488건 처리시간 0.025초

인간시각 기반 DCT 분류기와 VQ를 이용한 계층적 영상부호화 (DCT Classifier based on HVS and Pyramidal Image Coding using VQ)

  • 김석현;하영호;김수중
    • 한국통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.47-56
    • /
    • 1993
  • 본 연구는 인간시각을 기반으로 하는 DCT분류기를 사용하여 영상의 계층적 VQ부호화를 시도하였다. 제안된 인간시각기반 DCT분류기에서는 전 변환블록에 대영통과필터인 MTF을 곱하여 가중치를 두고, 전 블록들의 DCT계수의 ac 에너지 크기를 구하여, 크기순서대로 나영하여, 문턱치를 이요 여 높은분산블록들을 얻어낸 다음 이블록들에 대해서 에지방향 성분이 뚜렷한 계수들의 에너지합을 비교하여 최대 에너지를 갖는 방향을 그 에지의 방향으로 한다.향으로 한다.

  • PDF

프랙탈 차원과 퓨리에 파워스펙트럼을 이용한 간조직 분류 (The Texture Classification of Liver Parenchyma Using the Fractal Dimension and the Fourier Power Spectrum)

  • 정정원;김동윤
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.37-41
    • /
    • 1995
  • In this paper, we proposed the 2-stage ultrasound liver image classifier which uses the fractal dimensions obtained from the original image and its 1/2 subsampled image, and the Normalized Fourier Power Spectrum. The fractal dimension based on Fractional Brownian Motion (FBM) is calculated from the variance of the same scale pixels instead of the mean of them. Since the actual ultrasound. liver images does not fully match the FBM, to get the fractal dimension, we use the scale vectors which satisfy the FBM model. In 2-stage classifier, we first classified normal and diffuse liver and then classified the fat liver and cirrhosis from the diffuse liver. For the test liver images. 70% of normal liver and 80% of fat liver and 90% of cirrhosis is classified classified with our 2-stage classifier.

  • PDF

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

핵형 분류를 위한 퍼지 멤버쉽 함수의 처리 (Computing of the Fuzzy Membership Function for Karyotype Classification)

  • 엄상희;남재현
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권6호
    • /
    • pp.1-8
    • /
    • 2006
  • 많은 연구자들이 자동 염색체 핵형 분류와 해석을 연구하고 있다. 현미경상의 이미지를 개개의 염색체로 자동 분류하기 위해서는 이미지 전처리 핵형 분류기 구현 등의 세부 절차가 필요하다. 이미지 전처리에서는 개개의 염색체 분리, 잡음 제거, 특징 파라미터 추출을 진행한다. 추출된 형태학적 특징 파라미터는 동원체 지수, 상대 길이비, 상대 면적비이다. 본 논문에서는 인간 염색체 핵형 분류를 위하여 퍼지 분류기가 사용되어졌다. 추출된 형태학적 특징 파라미터가 퍼지 분류기의 입력 파라미터로 사용되었다. 우리는 개개의 염색체 그룹에 대한 최적 퍼지 분류기를 위하여 멤버쉽 함수를 선택하는 것을 연구하였다.

  • PDF

한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법 (A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography)

  • 권주원;강호경;노용만;김성민
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

퍼지-베이시안을 이용한 인간.가축 분류 (Human-Livestock Classifier by Using Fuzzy Bayesian Algorithm)

  • 오명재;주영훈
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1941-1945
    • /
    • 2011
  • In this paper, we propose a real-time classifier to distinguish humans from livestock by using the spatial integral. The image-difference method and the Expectation Maximization are used to reduce noises in input image. A histogram analysis based on Simulated Annealing and the fuzzy-Bayesian algorithm are used to classify human and livestock. Finally, the experiment results show the validity of the proposed method.

초중고 교육을 위한 딥러닝 기반 암석 분류기 개발 (Development of deep learning-based rock classifier for elementary, middle and high school education)

  • 박진아;용환승
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제15권1호
    • /
    • pp.63-70
    • /
    • 2019
  • 최근 딥 러닝(Deep leaning)을 이용한 이미지 인식 분야의 연구가 활발히 진행되고 있다. 본 연구에서는 육안으로 관찰하여 분류하기 어려운 암석을 이미지만으로 분류하기 위해 딥 러닝 오픈 소스 프레임워크인 Tensorflow 기반의 CNN모델을 사용하여 고등학교 교육과정에서 다루는 암석 18종(화성암 6종, 변성암 6종, 퇴적암 6종)의 이미지를 통해 암석을 분류하는 시스템을 제안한다. 암석의 이미지를 학습시켜 암석을 구별하는 분류기를 개발하여 분류 성능을 확인하였으며 최종적으로 구현한 모바일 어플리케이션을 통해 교실 내 학습 또는 현장체험학습 등에서 학생들의 학습 보조도구로서 사용할 수 있다.

혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법 (A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier)

  • 김정현;등죽;김진영;강동중
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.

행렬 속성을 이용하는 질감 영상 분별기 (A Classifier for Textured Images Based on Matrix Feature)

  • 김준철;이준환
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.91-102
    • /
    • 1994
  • For the analysis of textured image, it requires large storage space and computation time to calculate the matrix features such as SGLDM(Spatial Gray Level Dependence Matrix). NGLDM(Neighboring Gray Level Dependence Matrix). NSGLDM(Neighboring Spatial Gray Level Dependence Matrix) and GLRLM(Gray Level Run Length Matrix). In spite of a large amount of information that each matrix contains, a set of several correlated scalar features calculated from the matrix is not sufficient to approximate it. In this paper, we propose a new classifier for textured images based on these matrices in which the projected vectors of each matrix on the meaningful directions are used as features. In the proposed method, an unknown image is classified to the class of a known image that gives the maximum similarity between the projected model vector from the known image and the vector from the unknown image. In the experiment to classify images of agricultural products, the proposed method shows good performance as much as 85-95% of correct classification ratio.

  • PDF

Freehand Forgery Detection Using Directional Density and Fuzzy Classifier

  • Han, Soowhan;Woo, Youngwoon
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.250-255
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional 5$\times$5 gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether genuine or forged with more than 98% overall accuracy even without any knowledge of vaned freehand forgeries.

  • PDF