• 제목/요약/키워드: Image Augmentation

검색결과 213건 처리시간 0.024초

Precise segmentation of fetal head in ultrasound images using improved U-Net model

  • Vimala Nagabotu;Anupama Namburu
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.526-537
    • /
    • 2024
  • Monitoring fetal growth in utero is crucial to anomaly diagnosis. However, current computer-vision models struggle to accurately assess the key metrics (i.e., head circumference and occipitofrontal and biparietal diameters) from ultrasound images, largely owing to a lack of training data. Mitigation usually entails image augmentation (e.g., flipping, rotating, scaling, and translating). Nevertheless, the accuracy of our task remains insufficient. Hence, we offer a U-Net fetal head measurement tool that leverages a hybrid Dice and binary cross-entropy loss to compute the similarity between actual and predicted segmented regions. Ellipse-fitted two-dimensional ultrasound images acquired from the HC18 dataset are input, and their lower feature layers are reused for efficiency. During regression, a novel region of interest pooling layer extracts elliptical feature maps, and during segmentation, feature pyramids fuse field-layer data with a new scale attention method to reduce noise. Performance is measured by Dice similarity, mean pixel accuracy, and mean intersection-over-union, giving 97.90%, 99.18%, and 97.81% scores, respectively, which match or outperform the best U-Net models.

인조 번호판을 이용한 자동차 번호인식 성능 향상 기법 (Improved Method of License Plate Detection and Recognition using Synthetic Number Plate)

  • 장일식;박구만
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.453-462
    • /
    • 2021
  • 자동차 번호인식을 위해선 수많은 번호판 데이터가 필요하다. 번호판 데이터는 과거의 번호판부터 최신의 번호판까지 균형 있는 데이터의 확보가 필요하다. 하지만 실제 과거의 번호판부터 최신의 번호판의 데이터를 획득하는데 어려움이 있다. 이러한 문제를 해결하기 위해 인조 번호판을 이용하여 자동차 번호판을 생성하여 딥러닝을 통한 번호판 인식 연구가 진행되고 있다. 하지만 인조 데이터는 실제 데이터와 차이가 존재하며, 이러한 문제를 해결하기 위해 다양한 데이터 증강 기법을 사용한다. 기존 데이터 증강 방식은 단순히 밝기, 회전, 어파인 변환, 블러, 노이즈등의 방법을 사용하였다. 본 논문에서는 데이터 증강 방법으로 인조데이터를 실제 데이터 스타일로 변환하는 스타일 변환 방법을 적용한다. 또한 실제 번호판 데이터는 원거리가 많고 어두운 경우 잡음이 많이 존재한다. 단순히 입력데이터를 가지고 문자를 인식할 경우 오인식의 가능성이 높다. 이러한 경우 문자인식 향상을 위해 본 논문에서는 문자인식을 위하여 화질개선 방법으로 DeblurGANv2 방법을 적용하여 번호판 인식 정확도를 높였다. 번호판 검출 및 번호판 번호인식을 위한 딥러닝의 방식은 YOLO-V5를 사용하였다. 인조 번호판 데이터 성능을 판단하기 위해 자체적으로 확보한 자동차 번호판을 수집하여 테스트 셋을 구성하였다. 스타일 변환을 적용하지 않은 번호판 검출이 0.614mAP를 기록하였다. 스타일 변환을 적용한 결과 번호판 검출 성능이 0.679mAP 기록하여 성능이 향상되었음을 확인하였다. 또한 번호판 문자인식에는 화질 개선을 하지 않은 검출 성공률은 0.872를 기록하였으며, 화질 개선 후 검출 성능이 0.915를 기록하여 성능 향상이 되었음을 확인 하였다.

픽셀 단위 컨볼루션 네트워크를 이용한 복부 컴퓨터 단층촬영 영상 기반 골전이암 병변 검출 알고리즘 개발 (Development of Bone Metastasis Detection Algorithm on Abdominal Computed Tomography Image using Pixel Wise Fully Convolutional Network)

  • 김주영;이시영;김규리;조경원;유승민;소순원;박은경;조백환;최동일;박훈기;김인영
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.321-329
    • /
    • 2017
  • This paper presents a bone metastasis Detection algorithm on abdominal computed tomography images for early detection using fully convolutional neural networks. The images were taken from patients with various cancers (such as lung cancer, breast cancer, colorectal cancer, etc), and thus the locations of those lesions were varied. To overcome the lack of data, we augmented the data by adjusting the brightness of the images or flipping the images. Before the augmentation, when 70% of the whole data were used in the pre-test, we could obtain the pixel-wise sensitivity of 18.75%, the specificity of 99.97% on the average of test dataset. With the augmentation, we could obtain the sensitivity of 30.65%, the specificity of 99.96%. The increase in sensitivity shows that the augmentation was effective. In the result obtained by using the whole data, the sensitivity of 38.62%, the specificity of 99.94% and the accuracy of 99.81% in the pixel-wise. lesion-wise sensitivity is 88.89% while the false alarm per case is 0.5. The results of this study did not reach the level that could substitute for the clinician. However, it may be helpful for radiologists when it can be used as a screening tool.

딥러닝 기반 스타일 변환 기법을 활용한 인공 달 지형 영상 데이터 생성 방안에 관한 연구 (A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique)

  • 나종호;이수득;신휴성
    • 터널과지하공간
    • /
    • 제32권2호
    • /
    • pp.131-143
    • /
    • 2022
  • 달 현지 탐사를 위해 무인 이동체가 활용되고 있으며, 달 지상 관심 지역의 지형 특성을 정확하게 파악하여 실시간으로 정보화 하는 작업이 요구된다. 하지만, 정확도 높은 지형/지물 객체 인식 및 영역 분할을 위해서는 다양한 배경조건의 영상 학습데이터가 필요하며 이러한 학습데이터를 구축하는 과정은 많은 인력과 시간이 요구된다. 특히 대상이 쉽게 접근하기 힘든 달이기에 실제 현지 영상의 확보 또한 한계가 있어, 사실에 기반하지만 유사도 높은 영상 데이터를 인위적으로 생성시킬 필요성이 대두된다. 본 연구에서는 가용한 중국의 달 탐사 Yutu 무인 이동체 및 미국의 Apollo 유인 착륙선에서 촬영한 영상을 통해 위치정보 기반 스타일 변환 기법(Style Transfer) 모델을 적용하여 실제 달 표면과 유사한 합성 영상을 인위적으로 생성하였다. 여기서, 유사 목적으로 활용될 수 있는 두 개의 공개 알고리즘(DPST, WCT2)를 구현하여 적용해 보았으며, 적용 결과를 시간적, 시각적 측면으로 비교하여 성능을 평가하였다. 평가 결과, 실험 이미지의 형태 정보를 보존하면서 시각적으로도 매우 사실적인 영상을 생성할 수 있음을 확인하였다. 향후 본 실험의 결과를 바탕으로 생성된 영상 데이터를 지형객체 자동 분류 및 인식을 위한 인공지능 학습용 영상 데이터로 추가 학습된다면 실제 달 표면 영상에서도 강인한 객체 인식 모델 구현이 가능할 것이라 판단된다.

Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지 (U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images)

  • 강종구;김근아;정예민;김서연;윤유정;조수빈;이양원
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1149-1161
    • /
    • 2021
  • 컴퓨터 비전 기술이 위성영상에 적용되면서, 최근 들어 딥러닝 영상인식을 이용한 구름 탐지가 관심을 끌고 있다. 본연구에서는 SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset과 영상자료증대 기법을 활용하여 U-Net 구름탐지 모델링을 수행하고, 10폴드 교차검증을 통해 객관적인 정확도 평가를 수행하였다. 512×512 화소로 구성된 1800장의 학습자료에 대한 암맹평가 결과, Accuracy 0.821, Precision 0.847, Recall 0.821, F1-score 0.831, IoU (Intersection over Union) 0.723의 비교적 높은 정확도를 나타냈다. 그러나 구름그림자 중 14.5%, 구름 중 19.7% 정도가 땅으로 잘못 예측되기도 했는데, 이는 학습자료의 양과 질을 보다 더 향상시킴으로써 개선 가능할 것으로 보인다. 또한 최근 각광받고 있는 DeepLab V3+ 모델이나 NAS(Neural Architecture Search) 최적화 기법을 통해 차세대중형위성 1, 2, 4호 등의 구름탐지에 활용 가능할 것으로 기대한다.

무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 연구 (A Study on Field Compost Detection by Using Unmanned AerialVehicle Image and Semantic Segmentation Technique based Deep Learning)

  • 김나경;박미소;정민지;황도현;윤홍주
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.367-378
    • /
    • 2021
  • 야적퇴비는 대표적인 축산계 비점오염원으로 강우로 인해 수계로 유입될 경우 야적퇴비에 포함된 인과 질소 등의 영양염류가 하천 수질에 악영향을 미칠 수 있다. 이에 본 논문에서는 무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 방법을 제안한다. 연구지역에서 취득한 39개의 정사영상을 토대로 Data Augmentation을 통해 약 30,000개의 데이터를 확보하였다. 취득한 데이터를 U-net을 기반으로 개발된 의미론적 분할 알고리즘에 적용시킨 후 OpenCV의 필터링 기법을 적용하여 정확도를 평가하였다. 정확도 평가 결과 화소정확도는 99.97%, 정밀도는 83.80%, 재현율은 60.95%, F1- Score는 70.57%의 정확도를 보였다. 정밀도에 비해 재현율이 떨어지는 것은 정성적으로 보았을 때 전체 이미지에서 가장자리에 작은 비율로 야적퇴비 픽셀이 존재하는 경우 과소추정되었기 때문이다. 향후 추가적인 데이터셋과 RGB 밴드 이외의 추가 밴드를 조합한다면 모델 정확도를 향상시킬 수 있을 것으로 판단된다.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권12호
    • /
    • pp.29-40
    • /
    • 2022
  • 본 논문에서는 딥러닝 기법의 하나인 Mask R-CNN과 랜덤포레스트 분류기를 이용해 당뇨병성 망막병증의 병리학적인 특징을 검출하고 분석하여 자동 진단하는 시스템을 연구하였다. 당뇨병성 망막병증은 특수장비로 촬영한 안저영상을 통해 진단할 수 있는데 밝기, 색조 및 명암은 장치에 따라 다를 수 있으며 안과 전문의의 의료적 판단을 도울 인공지능을 이용한 자동진단 시스템 연구와 개발이 가능하다. 이 시스템은 미세혈관류와 망막출혈을 Mask R-CNN 기법으로 검출하고, 후처리 과정을 거쳐 랜덤포레스트 분류기를 이용하여 안구의 정상과 비정상 상태를 진단한다. Mask R-CNN 알고리즘의 검출 성능 향상을 위해 이미지 증강 작업을 실시하여 학습을 진행하였으며 검출 정확도 측정을 위한 평가지표로는 다이스 유사계수와 Mean Accuracy를 사용하였다. 비교군으로는 Faster R-CNN 기법을 사용하였고 본 연구를 통한 검출 성능은 평균 90%의 다이스 계수를 통한 정확도를 나타내었으며 Mean Accuracy의 경우 91% 정확도의 검출 성능을 보였다. 검출된 병리증상을 토대로 랜덤포레스트 분류기를 학습하여 당뇨병성 망막 병증을 진단한 경우 99%의 정확도를 보였다.

데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법 (Efficient Poisoning Attack Defense Techniques Based on Data Augmentation)

  • 전소은;옥지원;김민정;홍사라;박새롬;이일구
    • 융합보안논문지
    • /
    • 제22권3호
    • /
    • pp.25-32
    • /
    • 2022
  • 최근 이미지 인식 및 탐지 분야에 딥러닝 기반의 기술이 도입되면서 영상 처리 산업이 활성화되고 있다. 딥러닝 기술의 발전과 함께 적대적 공격에 대한 학습 모델 취약점이 계속해서 보고되고 있지만, 학습 시점에 악의적인 데이터를 주입하는 포이즈닝 공격의 대응 방안에 대한 연구가 미흡한 실정이다. 종래 포이즈닝 공격의 대응 방안은 매번 학습 데이터를 검사하여 별도의 탐지 및 제거 작업을 수행해야 한다는 한계가 있었다. 따라서, 본 논문에서는 포이즌 데이터에 대해 별도의 탐지 및 제거과정 없이 학습 데이터와 추론 데이터에 약간의 변형을 가함으로써 공격 성공률을 저하시키는 기법을 제안한다. 선행연구에서 제안된 클린 라벨 포이즌 공격인 원샷킬 포이즌 공격을 공격 모델로 활용하였고, 공격자의 공격 전략에 따라 일반 공격자와 지능형 공격자로 나누어 공격 성능을 확인하였다. 실험 결과에 따르면 제안하는 방어 메커니즘을 적용하면 종래 방법 대비 최대 65%의 공격 성공률을 저하시킬 수 있었다.

Animal Face Classification using Dual Deep Convolutional Neural Network

  • Khan, Rafiul Hasan;Kang, Kyung-Won;Lim, Seon-Ja;Youn, Sung-Dae;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제23권4호
    • /
    • pp.525-538
    • /
    • 2020
  • A practical animal face classification system that classifies animals in image and video data is considered as a pivotal topic in machine learning. In this research, we are proposing a novel method of fully connected dual Deep Convolutional Neural Network (DCNN), which extracts and analyzes image features on a large scale. With the inclusion of the state of the art Batch Normalization layer and Exponential Linear Unit (ELU) layer, our proposed DCNN has gained the capability of analyzing a large amount of dataset as well as extracting more features than before. For this research, we have built our dataset containing ten thousand animal faces of ten animal classes and a dual DCNN. The significance of our network is that it has four sets of convolutional functions that work laterally with each other. We used a relatively small amount of batch size and a large number of iteration to mitigate overfitting during the training session. We have also used image augmentation to vary the shapes of the training images for the better learning process. The results demonstrate that, with an accuracy rate of 92.0%, the proposed DCNN outruns its counterparts while causing less computing costs.

Medical Image Analysis Using Artificial Intelligence

  • Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
    • 한국의학물리학회지:의학물리
    • /
    • 제30권2호
    • /
    • pp.49-58
    • /
    • 2019
  • Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.