• Title/Summary/Keyword: Image Acquisition

Search Result 1,309, Processing Time 0.031 seconds

Acquisition of HDR image using estimation of scenic dynamic range in images with various exposures (다중 노출 복수 영상에서 장면의 다이내믹 레인지 추정을 통한 HDR 영상 획득)

  • Park, Dae-Geun;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.10-20
    • /
    • 2008
  • Generally, to acquire an HDR image, many images that cover the entire dynamic range of the scene with different exposure times are required, then these images are fused into one HDR image. This paper proposes an efficient method for the HDR image acquisition with small number of images. First, we estimated scenic dynamic range using two images with different exposure times. These two images contain the upper and lower limit of the scenic dynamic range. Independently of the scene, according to varied exposure times, similar characteristics for both the maximum gray levels in images that include the upper limit and the minimum gray levels in images that include the lower limit are identified. After modeling these characteristics, the scenic dynamic range is estimated using the modeling results. This estimated scenic dynamic range is then used to select the proper exposure times for the acquisition of an HDR image. We selected only three proper exposure times because entire dynamic range of the cameras could be covered by three dynamic range of the cameras with different exposure times. To evaluate the error of the HDR image, experiments using virtual digital camera images were carried out. For several test images, the error of the HDR image using proposed method was comparable to that of the HDR image which utilize more than ten images for the HDR image acquisition.

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

Single Image Based HDR Algorithm Using Statistical Differencing and Histogram Manipulation (통계적 편차와 히스토그램 변형을 이용한 단일영상기반 고품질 영상 생성기법)

  • Song, Jin-Sun;Han, Kyu-Phil;Park, Yang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.764-771
    • /
    • 2018
  • In this paper, we propose a high-quality image acquisition algorithm using only a single image, which the high-quality image is normally referred as HDR ones. In order to acquire the HDR image, conventional methods need many images having different exposure values at the same scene and should delicately adjust the color values for a bit-expansion or an exposure fusion. Thus, they require considerable calculations and complex structures. Therefore, the proposed algorithm suggests a completely new approach using one image for the high-quality image acquisition by applying statistical difference and histogram manipulation, or histogram specification, techniques. The techniques could control the pixel's statistical distribution of the input image into the desired one through the local and the global modifications, respectively. As the result, the quality of the proposed algorithm is better than those of conventional methods implemented in commercial image editing softwares.

Variation on Estimated Values of Radioactivity Concentration according to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • With the recent development of precision medicine(Theranostics), interest and utilization of the quantitative function of SPECT/CT are increasing. This study aims to investigate the effect on the radioactivity concentration estimate by the increase or decrease in the total time of SPECT/CT imaging conditions. A standard image was obtained by the conditions of a total acquisition time of 600 sec(10 sec/f × 120 frames) by diluting 99mTc 91.76 MBq in a cylindrical phantom filled with sterile water, and a comparative image was obtained by increasing the total acquisition time by -90%, -75%, -50%, -25%, +50%, +100%. The CNR, radioactive concentration estimate(cps/ml), and the variation rate(%) of the recovery coefficient(RC) were analyzed by measuring the overall coefficient of interest in each image. The results[CNR, Radiation Concentration, RC] by the change in the number of projections for each increase or decrease rate(-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results[CNR, Radiation Concentration, RC] by the acquisition time change for each increase or decrease rate(-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at -90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Image quality(CNR) showed a pattern of change in proportion to the increase or decrease in the total acquisition time of SPECT/CT, but the result at quantitative evaluation showed a change of less than 5% in all experimental conditions, maintaining quantitative accuracy(RC less than 0.05) without much influence.

GEOCODING OF SAR IMAGE USING THE ORBIT AND ATTITUDE DETERMINATION OF RADARSAT (RADARSAT 위성의 궤도결정과 자세결정을 이용한 SAR 영상의 자리매김)

  • 소진욱;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.183-196
    • /
    • 1998
  • The Synthetic Aperture Radar(SAR) image and the Digital Elevation Model(DEM) of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is put in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates), but in this reserch the inverse method(mapping from geographic coordinates to image coordinates) is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between space-borne radar and target. And the relative motion is described in ECIC(earth-centered-initial coordinates) using Doppler equation and signal acquisition geometry.

  • PDF

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

The Discontinuities Extraction and Analysis of Rock Slope by 3D Image (3차원영상에 의한 암반사면의 불연속면 추출 및 분석)

  • 강준묵;김위현;박준규
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.163-167
    • /
    • 2003
  • As digital photogrammetry can acquire much three-dimensional data quickly and exactly in equal accuracy, and it has advantage that can use this in modelling, it's practical use possibility is increased in various field by collection method of data for GIS. In this study, it was intended to create 3D image that has coordinate system, and use in acquisition of position information for object. And, it was applied to discontinuities extraction and measurement of rock slope for practical use of three-dimensional image and examination of measurement accuracy. Through this, it is inspected the possibility of three-dimensional image creation and the acquisition of space information.

  • PDF

A Vision System for the Inspection of Shaft Worm (비전 시스템을 이용한 샤프트 웜 외관검사기 개발)

  • Bark, Jun-Sung;Kim, Tae-Ken;Kim, Han-Su;Yang, Woo-Suck
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.184-186
    • /
    • 2004
  • This paper is about vision system that exhibits automatic examination of the conditions of shaft's worm. The system is composed of three part : image acquisition, vision algorithm, and user interface. The image acquisition part is composed of motor control, illumination and optics. The vision algorithm examines the parts by labeling algorithm using shaft image. User interface is divided into two parts, user interface for feature registering with control value settings and user interface for examination operation. The automatic inspection system of this research is a tool for final examination of shaft worm. This tool can be practically used in production lines with simple adjustments.

  • PDF

Design of Two-way Image Acquisition System for 25\μm Tool Alignment in the Micro Hole Punching (25\μm 홀 펀칭 공구 정렬을 위한 광학 시스템 설계)

  • 주병윤;임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.190-204
    • /
    • 2004
  • The objective of this study is to develop a highly accurate micro tool alignment system applicable to the micro machining technology. In a specific application such as micro hole punching, radial clearance between micro tools is order of a few micron. Under this micron scale tool clearance, accuracy of tool alignment is very important for ensuring hole quality. In the present study, a two-way image acquisition system was developed, which can produce overlapped image of both micro tools that face each other, and applied to the tool alignment in the micro punching. Also, to meet alignment accuracy of tools within $1\mu\textrm{m}$, the cross correlation image processing algorithm was employed. With this system, $25\mu\textrm{m}$ punching tools with $1\mu\textrm{m}$ radial clearance could be accurately aligned.

Edge Enhancement due to Diffusion Effect in Magnetic Resonance Imaging (MR 영상에서 확산현상에 의한 경계강조)

  • Hong, I.K.;Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.124-127
    • /
    • 1995
  • Due to the self-diffusion of nuclear spins, the edge of phantoms is enhanced in the magnetic resonance imaging (MRI), especially in the case of microscopy [1]. According to several published works, theory has been established that the edge enhancement is caused by the motion narrowing around bounded regions due to diffusions of nuclear spins during data acquisition. It is found, however, that the signal decreases due to the diffusion attenuation and image is distorted as edge of the image is sharpened. In this paper, we wilt investigate this signal loss during data acquisition and its effects on image, i.e., image edge enhancement due to the diffusion phenomenon. This result is new and different from the previously discussed edge enhancement due to the diffusion, namely, by motion narrowing effect or spin bouncing effect at the boundary.

  • PDF