• Title/Summary/Keyword: Image 2D to 3D Model

Search Result 510, Processing Time 0.033 seconds

Region-Based 3D Image Registration Technique for TKR (전슬관절치환술을 위한 3차원 영역기반 영상정합 기술)

  • Key, J.H.;Seo, D.C.;Park, H.S.;Youn, I.C.;Lee, M.K.;Yoo, S.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.

A Geographic Modeling System Using GIS and Real Images (GIS와 실영상을 이용한 지리 모델링 시스템)

  • 안현식
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.137-149
    • /
    • 2004
  • For 3D modelling artificial objects with computers, we have to draw frames and paint the facet images on each side. In this paper, a geographic modelling system building automatically 3D geographic spaces using GIS data and real images of buildings is proposed. First, the 3D model of terrain is constructed by using TIN and DEM algorithms. The images of buildings are acquired with a camera and its position is estimated using vertical lines of the image and the GIS data. The height of the building is computed with the image and the position of the camera, which used for making up the frames of buildings. The 3D model of the building is obtained by detecting the facet iamges of the building and texture mapping them on the 3D frame. The proposed geographical modeling system is applied to real area and shows its effectiveness.

  • PDF

Standard Terminology System Referenced by 3D Human Body Model

  • Choi, Byung-Kwan;Lim, Ji-Hye
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • In this study, a system to increase the expressiveness of existing standard terminology using three-dimensional (3D) data is designed. We analyze the existing medical terminology system by searching the reference literature and perform an expert group focus survey. A human body image is generated using a 3D modeling tool. Then, the anatomical position of the human body is mapped to the 3D coordinates' identification (ID) and metadata. We define the term to represent the 3D human body position in a total of 12 categories, including semantic terminology entity and semantic disorder. The Blender and 3ds Max programs are used to create the 3D model from medical imaging data. The generated 3D human body model is expressed by the ID of the coordinate type (x, y, and z axes) based on the anatomical position and mapped to the semantic entity including the meaning. We propose a system of standard terminology enabling integration and utilization of the 3D human body model, coordinates (ID), and metadata. In the future, through cooperation with the Electronic Health Record system, we will contribute to clinical research to generate higher-quality big data.

3D Spatial Image City Models Generation and Applications for Ubiquitous-City (u-city를 위한 3차원 공간 영상 도시 모델 생성 및 적용 방안)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, urban planing, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system based on the 2-D digital maps and contour lines has limitation in implementation in reproducing the 3-D spatial city. Currently, the LiDAR data which combines the laser and GPS skill has been introduced to obtain high resolution accuracy in the altitude measurement in the advanced country. In this paper, we first introduce the LiDAR based researches in advanced foreign countries, then we propose the data generation scheme and an solution algorithm for the optimal management of our 3-D spatial u-City construction. For this purpose, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional model with long distance for 3D u-city model generation.

  • PDF

3D Face Modeling from a Frontal Face Image by Mesh-Warping (메쉬 워핑에 의한 정면 영상으로부터의 3D 얼굴 모델링)

  • Kim, Jung-Sik;Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.108-118
    • /
    • 2013
  • Recently the 3D modeling techniques were developed rapidly due to rapid development of computer vision, computer graphics with the excellent performance of hardware. With the advent of a variety of 3D contents, 3D modeling technology becomes more in demand and it's quality is increased. 3D face models can be applied widely to such contents with high usability. In this paper, a 3D face modeling is attempted from a given single 2D frontal face image. To achieve the goal, we thereafter the feature points using AAM are extracted from the input frontal face image. With the extracted feature points we deform the 3D general model by 2-pass mesh warping, and also the depth extraction based on intensity values is attempted to. Throughout those processes, a universal 3D face modeling method with less expense and less restrictions to application environment was implemented and it's validity was shown through experiments.

3D Library Platform Construction using Drone Images and its Application to Kangwha Dolmen (드론 촬영 영상을 활용한 3D 라이브러리 플랫폼 구축 및 강화지석묘에의 적용)

  • Kim, Kyoung-Ho;Kim, Min-Jung;Lee, Jeongjin
    • Cartoon and Animation Studies
    • /
    • s.48
    • /
    • pp.199-215
    • /
    • 2017
  • Recently, a drone is used for the general purpose application although the drone was builtfor the military purpose. A drone is actively used for the creation of contents, and an image acquisition. In this paper, we develop a 3D library module platform using 3D mesh model data, which is generated by a drone image and its point cloud. First, a lot of 2D image data are taken by a drone, and a point cloud data is generated from 2D drone images. A 3D mesh data is acquired from point cloud data. Then, we develop a service library platform using a transformed 3D data for multi-purpose uses. Our platform with 3D data can minimize the cost and time of contents creation for special effects during the production of a movie, drama, or documentary. Our platform can contribute the creation of experts for the digital contents production in the field of a realistic media, a special image, and exhibitions.

Point Cloud Registration Algorithm Based on RGB-D Camera for Shooting Volumetric Objects (체적형 객체 촬영을 위한 RGB-D 카메라 기반의 포인트 클라우드 정합 알고리즘)

  • Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.765-774
    • /
    • 2019
  • In this paper, we propose a point cloud matching algorithm for multiple RGB-D cameras. In general, computer vision is concerned with the problem of precisely estimating camera position. Existing 3D model generation methods require a large number of cameras or expensive 3D cameras. In addition, the conventional method of obtaining the camera external parameters through the two-dimensional image has a large estimation error. In this paper, we propose a method to obtain coordinate transformation parameters with an error within a valid range by using depth image and function optimization method to generate omni-directional three-dimensional model using 8 low-cost RGB-D cameras.

A GAN-based face rotation technique using 3D face model for game characters (3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법)

  • Kim, Handong;Han, Jongdae;Yang, Heekyung;Min, Kyungha
    • Journal of Korea Game Society
    • /
    • v.21 no.3
    • /
    • pp.13-24
    • /
    • 2021
  • This paper shows the face rotation applicable to game character facial illustration. Existing studies limited data to human face data, required a large amount of data, and the synthesized results were not good. In this paper, the following method was introduced to solve the existing problems of existing studies. First, a 3D model with features of the input image was rotated and then rendered as a 2D image to construct a data set. Second, by designing GAN that can learn features of various poses from the data built through the 3D model, the input image can be synthesized at a desired pose. This paper presents the results of synthesizing the game character face illustration. From the synthesized result, it can be confirmed that the proposed method works well.

Artificial Intelligence Image Segmentation for Extracting Construction Formwork Elements (거푸집 부재 인식을 위한 인공지능 이미지 분할)

  • Ayesha Munira, Chowdhury;Moon, Sung-Woo
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Concrete formwork is a crucial component for any construction project. Artificial intelligence offers great potential to automate formwork design by offering various design options and under different criteria depending on the requirements. This study applied image segmentation in 2D formwork drawings to extract sheathing, strut and pipe support formwork elements. The proposed artificial intelligence model can recognize, classify, and extract formwork elements from 2D CAD drawing image and training and test results confirmed the model performed very well at formwork element recognition with average precision and recall better than 80%. Recognition systems for each formwork element can be implemented later to generate 3D BIM models.

A New Image Analysis Method based on Regression Manifold 3-D PCA (회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • In this paper, we propose a new image analysis method based on regression manifold 3-D PCA. The proposed method is a new image analysis method consisting of a regression analysis algorithm with a structure designed based on an autoencoder capable of nonlinear expansion of manifold 3-D PCA and PCA for efficient dimension reduction when entering large-capacity image data. With the configuration of an autoencoder, a regression manifold 3-DPCA, which derives the best hyperplane through three-dimensional rotation of image pixel values, and a Bayesian rule structure similar to a deep learning structure, are applied. Experiments are performed to verify performance. The image is improved by utilizing the fine dust image, and accuracy performance evaluation is performed through the classification model. As a result, it can be confirmed that it is effective for deep learning performance.