• Title/Summary/Keyword: Ilmenite

Search Result 147, Processing Time 0.026 seconds

Fundamental Study of Ilmenite Type Coated Arc Welding Electrode - Effect of the variation of the basicity in ilmenite type coated arc welding electrode on the chemical composition and mechanical porpeties - (일미나이트계 피복아아크 용접봉의 기초적 연구 - 일미나이트계 피복아아크 용접봉의 염기도가 화학성분 및 기계적 성질에 미치는 영향 -)

  • 권영수;손병영
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 1984
  • 피복아아크 용접봉(이하 용접봉이라 함)의 피복제는 염기도에 따라 산성, 중성, 염기성으로 대별할 수 있다. 용접에서의 화학야금반응은 제강의 화학야금반응과 원리는 비슷하나 양자간 크게 다른 점은 용접시의 반응시간이 극히 짧다는 점이다. 이와같이 반응시간이 짧다는 점 이외에도 작업자가 직접 용융반응을 지켜 보면서 반응후에 나타나는 제반 문제점에 대비하여야 하는 어려운 점이 있다. 제강반응은 전문가만의 독특한 기술인 반면 용접은 용접봉 제조자 뿐만 아니라, 용접작업자 고유의 기술이므로 용접야금반응을 상식화 하고자 하는데 본 고는 의의를 두고 있다. 피복제 중에서의 염기도의 변화, 즉 염기도에 영향을 크게 미치는 탄산칼슘의 양을 임의로 변화시키므로서 다음과 같은 현상을 기대할 수 있다. (1)용접 작업성의 변화 (2)용착 금속의 화학성분 변화 (3)용착금속의 조직 변화 (4) 용착금속내의 수소 함유량 변화 (5)용착금속의 기계적 성질변화 등이다.

  • PDF

A Study on Iron Compounds of Scoria in The Northern Area of Jeju (제주 북부지역 스코리아의 철 화합물에 관한 연구)

  • Choi, Won-Jun;Ko, Jeong-Dae
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.168-173
    • /
    • 2008
  • Fe compounds of scoria distributed in northern area of Jeju island are investigated using X-ray fluorescence spectroscopy, X-ray diffractometry, and $^{57}Fe$ Mossbauer spectroscopy. The samples were prepared from four parasite volcanos. These samples consist of the typical basalt comprised of $SiO_2,\;Al_2O_3$, Fe compounds, and silicate minerals. The $M{\ddot{o}}ssbauer$ spectra showed doublets for olivine, pyroxene, and ilmenite as well as sextets for hematite and magnetite. The valence state of Fe is chiefly a 3+ charge state with a little 2+ charge state. It is expected that this results will add to the body of information related to the information mechanism of Jeju island. The geochemistry for these samples is the same results to mid-mountain's samples in Jeju Island.

Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete

  • Ashraf M. Heniegal;Mohamed Amin;S.H. Nagib;Hassan Youssef;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.499-516
    • /
    • 2023
  • To defend against harmful gamma radiation, new types of materials for use in the construction of heavyweight concrete (HWC) are still needed to be developed. This research introduces new materials to be employed as a partial replacement for fine aggregate (FA) to manufacture high-performance heavyweight concrete (HPHWC). These materials include hematite, black sand, ilmenite, and magnetite, with substitution ratios of 50% and 100% of FA. In this research, the hardening and fresh characteristics of HPHWC were obtained. Concrete samples' Gamma-ray linear attenuation coefficient was evaluated utilizing a gamma source of Co-60 through the thicknesses of 2.5, 5, 7.5, 10, 12.5, and 15 cm. High temperatures were studied for HPHWC samples, which were exposed to up to 700℃ for two hours. Energy-dispersive x-rays and a scanning electron microscope carried out microstructure analyses. Magnetite as an FA attained the lowest compressive strength of 87.1 MPa, but the best radiation protection characteristics and the highest density of 3100 kg/m3 were achieved. After 28 days, the attenuation efficiency of concrete mixtures was increased by 6.5% when fine sand was replaced with black sand at a ratio of 50%. HPHWC, which contains hematite, black sand, ilmenite, and magnetite, is designed to reduce environmental and health dangers and be used in medicinal, military, and civil applications.

Ore Mineralization of The Hadong Fe-Ti-bearing Ore Bodies in the Hadong-Sancheong Anorthosite Complexes (하동-산청 회장암체 내 부존하는 하동 함 철-티탄 광체의 광화작용)

  • Lee, In-Gyeong;Jun, Youngshik;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • The Hadong-Sancheong Proterozoic anorthosite complex occurs in the southwestern region of the Ryongnam massif. The geology of the area mainly consists of metamorphic rocks of the Jirisan metamorphic complex as basement rocks, charnockite, and the Hadong-Sancheong anorthosite, which are intruded by the Mesozoic igneous rocks. Hadong-Sancheong anorthosite complex is divided into the Sancheong anorthosite and the Hadong anorthosite which occur at north-southern and south area of the Jurassic syenite, respectively. The Hadong Fe-Ti-bearing dike-like ore bodies developed intermittently in the Hadong anorthosite with north-south direction and extend about 14 km. The Hadong Fe-Ti-bearing ore bodies consist mainly of magnetite and ilmenite with rutile, titanite, and minor amounts of sulfides(pyrrhotite, pyrite, chalcopyrite and sphalerite). The Hadong Fe-Ti-bearing ore bodies show a paragenetic sequence of magnetite-ilmenite ${\rightarrow}$ magnetite-ilmenite-pyrrhotite ${\rightarrow}$ ilmenite-pyrrhotite-rutile-titanite(and/or pyrite) ${\rightarrow}$ sulfides. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages indicate that early Fe-Ti-bearing ore mineralization in the ore bodies occurs at about $700^{\circ}C$ which corresponds to oxygen fugacity of about $10^{-11.8}{\sim}10^{-17.2}$ atm with the decrease tendency of sulfur fugacity to about $10^0$ atm as equilibrium of $Fe_3O_4-FeS$. The change of ore mineral assemblages from Fe-Ti-bearing minerals to sulfides in late ore mineralization of the ore bodies indicates that oxygen fugacity would have slightly decreased to ${\geq}10^{-20.2}$ atm and increased sulfur fugacity to ${\geq}10^0$ atm.

Leaching Behavior of Vanadium and Possibility of Recovery of Valuable Metals from VTM Concentrate by Sulfuric Acid Leaching (바나듐함유 티탄철석 정광으로부터 황산 침출법에 의한 바나듐의 침출거동 및 유가금속의 회수가능성)

  • Joo, Sung-Ho;Shin, Dong Ju;Lee, Dongseok;Park, Jin-Tae;Jeon, Hoseok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • A study was conducted in Korea on the leaching behavior and possibility of recovery of vanadium and other valuable metals from domestic vanadium titanomagnetite (VTM) by direct acid leaching. In this study, a VTM concentrate containing 0.8% V2O5 was used, and the ratio of magnetite to ilmenite was calculated as 1.9:1 by using the HSC program. The leaching behavior of vanadium from the VTM was similar to that of iron, and it was affected by the concentration of sulfuric acid and temperature. Further, titanium could be leached in the form of TiOSO4 at a temperature higher than 75℃. To improve the leaching efficiency of V, Fe, and Ti in VTM, reductive sulfuric acid and oxidative sulfuric acid leaching were performed. When Na2SO3 was used as a reducing agent, the leaching rate of vanadium was 80% of that in that case of leaching by sulfuric acid. Similarly, the leaching rate of titanium increased from 20% to 50%. When Na2S2O8 was used as an oxidation agent, most of the vanadium was leached, and the main residue found by XRD analysis was ilmenite. In studies on the possibility of recovering valuable metals, the selective extraction of metals is hardly achieved by solvent extraction from oxidation leaching solutions; however, in this study, Cyanex 923, a solvation extractant from reductive leaching solutions, could selectively extract Ti.

Mineralogy of Sea Sand Near Ongjingun through the Separation Processes (옹진군 해사의 선별공정에 따른 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Chun-Oh;Kim, Jung-Yoon;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2011
  • Mineralogical study was carried out for heavy minerals in the sea sand near Ongjingun bay, Kyonggi-do separated using the gravity and magnetic separators. Ilmenite, zircon and minor monazite and garnet were valuable minerals with gangue minerals of quartz, K-feldspar, plagioclase, muscovite, hornblende, epidote and chlorite. Quantitative analysis with SIROQUANT program showed that the contents of ilmenite separated with the gravity separation (the shaking table separation), the 1st step magnetic separation (rare earth magnetic separation) and the 2nd step magnetic separation (the Eddy current magnetic separation) were increased into 0.8, 18.3, and 48.7%, respectively. The content of ilmenite, monazite and zircon were recalculated based on the chemical composition of the representative and heavy fraction products of raw sand, the 1 step and 2 step gravity separations, and the 1 step and 2 step magnetic separations. The content increased to 0.23, 0.55, 5.22, 16.17, and 44.99% in ilmenite, 0.11, 0.02, 0.16, 0.51, and 1.19% in monazite. Although the zircon content did not differ over the processes (0.13, 0.12, 0.11, 0.15, and 0.10%), the improved recovery of zircon is expected by applying sieving process because of its high content (27%) in the fine grain size fraction (< 140#) of the 2 step gravity separation.

Changes on Physical Property of Ilmenite due to Microorganism (미생물에 의한 티탄철석의 물리적 특성 변화)

  • Park, Young Ho;Kang, Dae Wan;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.321-329
    • /
    • 2012
  • Laboratory tests for measuring absorption, porosity, P-wave velocity and uniaxial compressive strength (UCS) were performed to examine weathering characteristics of ilmenite by microorganism. Physical property changes were quantitatively estimated with comparing culture period on the condition of abiotic oxidation without microorganism and biooxidation with microorganism. As a result, the measured pH during 45 days was distributed in the range from 3.82 to 4.26, on the other hand, biooxidation showed the range from 2.20 to 2.57. The measured absorption according to microorganism and culture period represented 0.052% at final stage in the case of abiotic oxidation and 0.073% in the case of biooxidation. Porosity showed 0.206% at final stage in the case of abiotic oxidation and 0.281% in the case of biooxidation. In general, the values by biooxidation showed higher than that by abiotic oxidation. Change range of P-wave velocity with culture period showed that the measured value as 1410 m/s at final stage in the case of biooxidation was lower than 1886 m/s of that in the case of abiotic oxidation. The UCS was decreased with increasing culture period in all specimens and represented 241.1 MPa at final stage in the case of abiotic oxidation and 140.0 MPa in the case of bioxidation. In conclusion, it implies that influence of physical property on ilmenite by biooxidation related with microorganism was larger than that by abiotic oxidation.

A Study on the Iron Compounds of Cinder Cones' Scoria in the Southern Area of Halla Mt., Jeju Island (제주도 한라산 남부 지역 분석구 스코리아의 철 화합물에 관한 연구)

  • Ko, Jeong Dae;Choi, Won Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.213-218
    • /
    • 2016
  • This study reviewed mineral composition on Scoria samples of this area, atomic value state of oxidized steel, and magnetic property in order to look into characteristics of scoria that was distributed in southern area of mountainous areas, Halla Mt. of Jeju Island. By XRD analysis, mineral composition was confirmed, and characteristics of iron compounds existed in samples were investigated through $M{\ddot{o}}ssbauer$ spectroscope. Composing minerals could be learnt as feldspar basalt from XRD analysis because composting minerals were composed of quartz and feldspar anorite mainly, and iron compounds were made up with olivine, pyroxene, ilmenite, hematite, and magnetite. By $M{\ddot{o}}ssbauer$ spectroscope analysis on these iron compounds. it consisted of hematite and magnetite which showed hyperfine magnetic field of sextet mostly, and also doublet by olivine, pyroxene, ilmenite could be seen as appearing together. As a result of comparing with samples of Jeju western area having been announced in previous research, I.S. and Q.S. values of olivine, $Fe^{2+}$, were 122 mm/s and 3.09~3.13 mm/s respectively, and a fact could be known that $Fe^{2+}$ olivine having similar structure each other was contained, and the ratio of $Fe^{3+}/Fe_{tot.}$. was 85.90~92.82 %. From these findings, it was able to be presumed that they belonged to samples having been formed on the land at the same period of time. As a result of investigating area ratio of tetrahedron (A site) and octahedron (B site) regarding magnetite in samples, it was turn out to be 0.22~0.55 less than 2.

SHIELD DESIGN OF CONCRETE WALL BETWEEN DECAY TANK ROOM AND PRIMARY PUMP ROOM IN TRIGA FACILITY

  • Khan, M J H;Rahman, M;Ahmed, F U;Bhuiyan, S I;Haque, A;Zulquarnain, A
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.190-193
    • /
    • 2007
  • The objective of this study is to recommend the radiation protection design parameters from the shielding point of view for concrete wall between the decay tank room and the primary pump room in TRIGA Mark-II Research Reactor Facility. The shield design for this concrete wall has been performed with the help of Point-kernel Shielding Code Micro-Shield 5.05 and this design was also validated based on the measured dose rate values with Radiation Survey Meter (G-M Counter) considering the ICRP-60 (1990) recommendations for occupational dose rate limit ($10{\mu}Sv/hr$). The recommended shield design parameters are: (i) thickness of 114.3 cm Ilmenite-Magnetite Concrete (IMC) or 129.54 cm Ordinary Reinforced Concrete (ORC) for concrete wall A (ii) thickness of 66.04 cm Ilmenite-Magnetite Concrete (IMC) or 78.74 cm Ordinary Reinforced Concrete (ORC) for concrete wall B and (iii) door thickness of 3.175 cm Mild Steel (MS) on the entrance of decay tank room. In shielding efficiency analysis, the use of I-M concrete in the design of this concrete wall shows that it reduced the dose rate by a factor of at least 3.52 times approximately compared to ordinary reinforced concrete.