• Title/Summary/Keyword: Illumination robustness

Search Result 62, Processing Time 0.028 seconds

Illumination Invariant Ranging Sensor Based on Structured Light Image (조명잡음에 강인한 구조광 영상기반 거리측정 센서)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.122-130
    • /
    • 2010
  • This paper presents an active ranging system based on laser structured-light image. The structured-light image processing is computationally efficient in comparison with the conventional stereo image processing, since the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise, an efficient image processing algorithm, i.e., integration of difference images with structured-light modulation is proposed. Distance equation from the measured structured light pixel distance and system parameter calibration are addressed in this paper. Experiments and analysis are carried out to verify performance of the proposed ranging system.

Study On the Robustness Of Four Different Face Authentication Methods Under Illumination Changes (얼굴인증 방법들의 조명변화에 대한 견인성 연구)

  • 고대영;천영하;김진영;이주헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2036-2039
    • /
    • 2003
  • This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows; Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory(ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.

  • PDF

An Enhanced Histogram Matching Method for Automatic Visual Defect Inspection robust to Illumination and Resolution (조명과 해상도에 강인한 자동 결함 검사를 위한 향상된 히스토그램 정합 방법)

  • Kang, Su-Min;Park, Se-Hyuk;Huh, Kyung-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1030-1035
    • /
    • 2014
  • Machine vision inspection systems have replaced human inspectors in defect inspection fields for several decades. However, the inspection results of machine vision are often affected by small changes of illumination. When small changes of illumination appear in image histograms, the influence of illumination can be decreased by transformation of the histogram. In this paper, we propose an enhanced histogram matching algorithm which corrects distorted histograms by variations of illumination. We use the resolution resizing method for an optimal matching of input and reference histograms and reduction of quantization errors from the digitizing process. The proposed algorithm aims not only for improvement of the accuracy of defect detection, but also robustness against variations of illumination in machine vision inspection. The experimental results show that the proposed method maintains uniform inspection error rates under dramatic illumination changes whereas the conventional inspection method reveals inconsistent inspection results in the same illumination conditions.

Robustness of Display Hemispherical Reflectance Measurement Apparatus

  • Penczek, John;Kelley, Edward F.;Kim, Seung-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1355-1357
    • /
    • 2008
  • Reflection measurements are critical to the evaluation of display performance under ambient illumination conditions. Various hemispherical reflection methods are evaluated for their suitability and robustness across display technologies. The standard integrating sphere method is compared to a sampling sphere apparatus.

  • PDF

Study On The Robustness Of Face Authentication Methods Under illumination Changes (얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구)

  • Ko Dae-Young;Kim Jin-Young;Na Seung-You
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.9-16
    • /
    • 2005
  • This paper focuses on the study of the face authentication system and the robustness of fact authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as fellows; PCA(Principal Component Analysis), GMM(Gaussian Mixture Modeis), 1D HMM(1 Dimensional Hidden Markov Models), Pseudo 2D HMM(Pseudo 2 Dimensional Hidden Markov Models). Experiment results involving an artificial illumination change to fate images are compared with each other. Face feature vector extraction based on the 2D DCT(2 Dimensional Discrete Cosine Transform) if used. Experiments to evaluate the above four different fate authentication methods are carried out on the ORL(Olivetti Research Laboratory) face database. Experiment results show the EER(Equal Error Rate) performance degrade in ail occasions for the varying ${\delta}$. For the non illumination changes, Pseudo 2D HMM is $2.54{\%}$,1D HMM is $3.18{\%}$, PCA is $11.7{\%}$, GMM is $13.38{\%}$. The 1D HMM have the bettor performance than PCA where there is no illumination changes. But the 1D HMM have worse performance than PCA where there is large illumination changes(${\delta}{\geq}40$). For the Pseudo 2D HMM, The best EER performance is observed regardless of the illumination changes.

Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM

  • Nam, Gi-Pyo;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.25-44
    • /
    • 2010
  • With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.

A Study on Real-Time Vision-Based Detection of Skin Pigmentation

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.77-85
    • /
    • 2014
  • Usually, the skin pigmentation detection and diagnosis are made by clinicians. In this process it is subjective and non-quantitative. We develop an approach to detect and measure the different pigmentation lesions base on computer vision technology. In the paper we study several usually used skin-detecting color space like HSV, YCbCr and normalized RGB. We compare their performance with illumination influence for detecting the pigmentation lesions better. Base on a relatively stable color space, we propose an approach which is RGB channels vector difference characteristic for the detection. After the object region detection, we also use the difference to measure the difference between the lesion and the surrounding normal skin. From the experiment results, our approach can effectively detect the pigmentation lesion, and perform robustness with different illumination.

  • PDF

Face Recognition Using Adaboost Loaming (Adaboost 학습을 이용한 얼굴 인식)

  • 정종률;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2016-2019
    • /
    • 2003
  • In this paper, we take some features for face recognition out of face image, using a simple type of templates. We use the extracted features to do Adaboost learning for face recognition. Using a carefully-chosen feature among these features, we can make a weak face classifier for face recognition. And doing Adaboost learning on and on with those chosen several weak classifiers, we can get a strong face classifier. By using Adaboost Loaming, we can choose particular features which is not easily subject to changes in illumination and facial expression about several images of one person, and construct face recognition system. Therefore, the face classifier bulit like the above way has robustness in both facial expression and illumination variation, and it finally gives capability of recognizing face fast due to the simple feature.

  • PDF

Vision-based AGV Parking System (비젼 기반의 무인이송차량 정차 시스템)

  • Park, Young-Su;Park, Jee-Hoon;Lee, Je-Won;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • This paper proposes an efficient method to locate the automated guided vehicle (AGV) into a specific parking position using artificial visual landmark and vision-based algorithm. The landmark has comer features and a HSI color arrangement for robustness against illuminant variation. The landmark is attached to left of a parking spot under a crane. For parking, an AGV detects the landmark with CCD camera fixed to the AGV using Harris comer detector and matching descriptors of the comer features. After detecting the landmark, the AGV tracks the landmark using pyramidal Lucas-Kanade feature tracker and a refinement process. Then, the AGV decreases its speed and aligns its longitudinal position with the center of the landmark. The experiments showed the AGV parked accurately at the parking spot with small standard deviation of error under bright illumination and dark illumination.

BOX-AND-ELLIPSE-BASED NEURO-FUZZY APPROACH FOR BRIDGE COATING ASSESSMENT

  • Po-Han Chen;Ya-Ching Yang;Luh-Maan Chang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.257-262
    • /
    • 2009
  • Image processing has been utilized for assessment of infrastructure surface coating conditions for years. However, there is no robust method to overcome the non-uniform illumination problem to date. Therefore, this paper aims to deal with non-uniform illumination problems for bridge coating assessment and to achieve automated rust intensity recognition. This paper starts with selection of the best color configuration for non-uniformly illuminated rust image segmentation. The adaptive-network-based fuzzy inference system (ANFIS) is adopted as the framework to develop the new model, the box-and-ellipse-based neuro-fuzzy approach (BENFA). Finally, the performance of BENFA is compared to the Fuzzy C-Means (FCM) method, which is often used in image recognition, to show the advantage and robustness of BENFA.

  • PDF