• 제목/요약/키워드: Illumination robustness

검색결과 62건 처리시간 0.028초

조명잡음에 강인한 구조광 영상기반 거리측정 센서 (Illumination Invariant Ranging Sensor Based on Structured Light Image)

  • 신진;이수영
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.122-130
    • /
    • 2010
  • This paper presents an active ranging system based on laser structured-light image. The structured-light image processing is computationally efficient in comparison with the conventional stereo image processing, since the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise, an efficient image processing algorithm, i.e., integration of difference images with structured-light modulation is proposed. Distance equation from the measured structured light pixel distance and system parameter calibration are addressed in this paper. Experiments and analysis are carried out to verify performance of the proposed ranging system.

얼굴인증 방법들의 조명변화에 대한 견인성 연구 (Study On the Robustness Of Four Different Face Authentication Methods Under Illumination Changes)

  • 고대영;천영하;김진영;이주헌
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2036-2039
    • /
    • 2003
  • This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows; Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory(ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.

  • PDF

조명과 해상도에 강인한 자동 결함 검사를 위한 향상된 히스토그램 정합 방법 (An Enhanced Histogram Matching Method for Automatic Visual Defect Inspection robust to Illumination and Resolution)

  • 강수민;박세혁;허경무
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1030-1035
    • /
    • 2014
  • Machine vision inspection systems have replaced human inspectors in defect inspection fields for several decades. However, the inspection results of machine vision are often affected by small changes of illumination. When small changes of illumination appear in image histograms, the influence of illumination can be decreased by transformation of the histogram. In this paper, we propose an enhanced histogram matching algorithm which corrects distorted histograms by variations of illumination. We use the resolution resizing method for an optimal matching of input and reference histograms and reduction of quantization errors from the digitizing process. The proposed algorithm aims not only for improvement of the accuracy of defect detection, but also robustness against variations of illumination in machine vision inspection. The experimental results show that the proposed method maintains uniform inspection error rates under dramatic illumination changes whereas the conventional inspection method reveals inconsistent inspection results in the same illumination conditions.

Robustness of Display Hemispherical Reflectance Measurement Apparatus

  • Penczek, John;Kelley, Edward F.;Kim, Seung-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1355-1357
    • /
    • 2008
  • Reflection measurements are critical to the evaluation of display performance under ambient illumination conditions. Various hemispherical reflection methods are evaluated for their suitability and robustness across display technologies. The standard integrating sphere method is compared to a sampling sphere apparatus.

  • PDF

얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구 (Study On The Robustness Of Face Authentication Methods Under illumination Changes)

  • 고대영;김진영;나승유
    • 정보처리학회논문지B
    • /
    • 제12B권1호
    • /
    • pp.9-16
    • /
    • 2005
  • 본 논문은 얼굴인증 시스템 구현과 조명변화에 견인한 얼굴인증 방법들에 관한 연구에 초점을 둔다. 얼굴인증 시스템 구현을 위한 방법으로 PCA(Principal Component Analysis), GMM(Gaussian Mixture Models), 1차원 HMM(1 Dimensional Hidden Markov Models), 준 2차원 HMM(Pseudo 2 Dimensional Hidden Markov Models) 방법을 이용한다. 네 가지 다른 얼굴인증 방법들의 조명변화에 대한 성능비교 실험을 수행한다. 조명변화실험을 위해 얼굴이미지의 왼쪽에서 오른쪽으로 인공적인 조명효과(${\delta}=0,40,60,80$)를 준다. 얼굴특징벡터는 얼굴이미지에서 분할한 각 블록에 대한 2D DCT(2 Dimensional Discrete Cosine Transform) 계수를 이용하고 실험은 ORL(Olivetti Research Laboratory) 얼굴데이터베이스를 사용한다. 실험결과 모든 경우 조명변화 값이 커질수록 성능저하가 발생한다. 또한 조명변화가 없는 경우(${\delta}=0$) 준 2차원 HMM이 $2.54{\%}$, 1차원 HMM이 $3.18{\%}$, PCA가 $11.7{\%}$, GMM이 $13.38{\%}$의 EER(Equal Error Rate) 성능을 나타낸다. 조명변화가 없는 경우(${\delta}=0$) 1차원 HMM 방법이 PCA 방법보다 좋은 성능을 나타내지만 조명변화 ${\delta}{\geq}40$인 때에는 반대로 PCA 방법이 더 좋은 성능을 나타낸다. 마지막으로 준 2차원 HMM의 경우 조명변화에 관계없이 가장 좋은 EER성능을 나타낸다.

Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM

  • Nam, Gi-Pyo;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권1호
    • /
    • pp.25-44
    • /
    • 2010
  • With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.

A Study on Real-Time Vision-Based Detection of Skin Pigmentation

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • 제1권1호
    • /
    • pp.77-85
    • /
    • 2014
  • Usually, the skin pigmentation detection and diagnosis are made by clinicians. In this process it is subjective and non-quantitative. We develop an approach to detect and measure the different pigmentation lesions base on computer vision technology. In the paper we study several usually used skin-detecting color space like HSV, YCbCr and normalized RGB. We compare their performance with illumination influence for detecting the pigmentation lesions better. Base on a relatively stable color space, we propose an approach which is RGB channels vector difference characteristic for the detection. After the object region detection, we also use the difference to measure the difference between the lesion and the surrounding normal skin. From the experiment results, our approach can effectively detect the pigmentation lesion, and perform robustness with different illumination.

  • PDF

Adaboost 학습을 이용한 얼굴 인식 (Face Recognition Using Adaboost Loaming)

  • 정종률;최병욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2016-2019
    • /
    • 2003
  • In this paper, we take some features for face recognition out of face image, using a simple type of templates. We use the extracted features to do Adaboost learning for face recognition. Using a carefully-chosen feature among these features, we can make a weak face classifier for face recognition. And doing Adaboost learning on and on with those chosen several weak classifiers, we can get a strong face classifier. By using Adaboost Loaming, we can choose particular features which is not easily subject to changes in illumination and facial expression about several images of one person, and construct face recognition system. Therefore, the face classifier bulit like the above way has robustness in both facial expression and illumination variation, and it finally gives capability of recognizing face fast due to the simple feature.

  • PDF

비젼 기반의 무인이송차량 정차 시스템 (Vision-based AGV Parking System)

  • 박영수;박지훈;이제원;김상우
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.473-479
    • /
    • 2009
  • This paper proposes an efficient method to locate the automated guided vehicle (AGV) into a specific parking position using artificial visual landmark and vision-based algorithm. The landmark has comer features and a HSI color arrangement for robustness against illuminant variation. The landmark is attached to left of a parking spot under a crane. For parking, an AGV detects the landmark with CCD camera fixed to the AGV using Harris comer detector and matching descriptors of the comer features. After detecting the landmark, the AGV tracks the landmark using pyramidal Lucas-Kanade feature tracker and a refinement process. Then, the AGV decreases its speed and aligns its longitudinal position with the center of the landmark. The experiments showed the AGV parked accurately at the parking spot with small standard deviation of error under bright illumination and dark illumination.

BOX-AND-ELLIPSE-BASED NEURO-FUZZY APPROACH FOR BRIDGE COATING ASSESSMENT

  • Po-Han Chen;Ya-Ching Yang;Luh-Maan Chang
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.257-262
    • /
    • 2009
  • Image processing has been utilized for assessment of infrastructure surface coating conditions for years. However, there is no robust method to overcome the non-uniform illumination problem to date. Therefore, this paper aims to deal with non-uniform illumination problems for bridge coating assessment and to achieve automated rust intensity recognition. This paper starts with selection of the best color configuration for non-uniformly illuminated rust image segmentation. The adaptive-network-based fuzzy inference system (ANFIS) is adopted as the framework to develop the new model, the box-and-ellipse-based neuro-fuzzy approach (BENFA). Finally, the performance of BENFA is compared to the Fuzzy C-Means (FCM) method, which is often used in image recognition, to show the advantage and robustness of BENFA.

  • PDF