• Title/Summary/Keyword: Illuminant chromaticity

Search Result 21, Processing Time 0.026 seconds

Estimation of Illuminant Chromaticity by Analysis of Human Skin Color Distribution (피부색 칼라 분포 특성을 이용한 조명 색도 검출)

  • JeongYeop Kim
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.59-71
    • /
    • 2023
  • This paper proposes a method of estimating the illumination chromaticity of a scene in which an image is taken. Storring and Bianco proposed a method of estimating illuminant chromaticity using skin color. Storring et al. used skin color distribution characteristics and black body locus, but there is a problem that the link between the locus and CIE-xy data is reduced. Bianco et al. estimated the illuminant chromaticity by comparing the skin color distribution in standard lighting with the skin color distribution in the input image. This method is difficult to measure and secure as much skin color as possible in various illumination. The proposed method can estimate the illuminant chromaticity for any input image by analyzing the relationship between the skin color information and the illuminant chromaticity. The estimation method is divided into an analysis stage and a test stage, and the data set was classified into an analysis group and a test group and used. Skin chromaticity is calculated by obtaining skin color areas from all input images of the analysis group, respectively. A mapping is obtained by analyzing the correlation between the average set of skin chromaticity and the reference illuminant chromaticity set. The calculated mapping is applied to all input images of the analysis group to estimate the illuminant chromaticity, calculate the error with the reference illuminant chromaticity, and repeat the above process until there is no change in the error to obtain a stable mapping. The obtained mapping is applied to the test group images similar to the analysis stage to estimate the illuminant chromaticity. Since there is no independent data set containing skin area and illuminant reference information, the experimental data set was made using some of the images of the Intel TAU data set. Compared to Finlayson, a similar theory-based existing method, it showed performance improvement of more than 40%, Zhang 11%, and Kim 16%.

  • PDF

Estimation of Illuminant Chromaticity by Equivalent Distance Reference Illumination Map and Color Correlation (균등거리 기준 조명 맵과 색 상관성을 이용한 조명 색도 추정)

  • Kim Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.267-274
    • /
    • 2023
  • In this paper, a method for estimating the illuminant chromaticity of a scene for an input image is proposed. The illuminant chromaticity is estimated using the illuminant reference region. The conventional method uses a certain number of reference lighting information. By comparing the chromaticity distribution of pixels from the input image with the chromaticity set prepared in advance for the reference illuminant, the reference illuminant with the largest overlapping area is regarded as the scene illuminant for the corresponding input image. In the process of calculating the overlapping area, the weights for each reference light were applied in the form of a Gaussian distribution, but a clear standard for the variance value could not be presented. The proposed method extracts an independent reference chromaticity region from a given reference illuminant, calculates the characteristic values in the r-g chromaticity plane of the RGB color coordinate system for all pixels of the input image, and then calculates the independent chromaticity region and features from the input image. The similarity is evaluated and the illuminant with the highest similarity was estimated as the illuminant chromaticity component of the image. The performance of the proposed method was evaluated using the database image and showed an average of about 60% improvement compared to the conventional basic method and showed an improvement performance of around 53% compared to the conventional Gaussian weight of 0.1.

Transformation of Illuminant Chromaticity for Arbitrary Color Temperature (임의 색온도에 대한 조명 색 변환기법)

  • Kim Jeong-Yeop;Kim Sang-Hyun;Hyun Ki-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1370-1377
    • /
    • 2004
  • The still image and video of the same scene taken under various condition show different color, and the most important factor of capture condition is scene illuminant. The average color of contents is determined along the color temperature of scene illuminant, the method for conversion of scene illuminant chromaticity is needed. In this paper, the method for converting the scene illuminant chromaticity from arbitrary correlated color temperature to another arbitrary one is proposed. Conventional method only defines several set of color temperature conversion that can be evaluated as representative ones. The proposed method has the merit of calculating the conversion function directly from arbitrary color temperature to another one.

  • PDF

Color Correction Using Chromaticity of Highlight Region in Multi-Scaled Retinex

  • Jang, In-Su;Park, Kee-Hyon;Ha, Yeong-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.59-62
    • /
    • 2009
  • In general, as a dynamic range of digital still camera is narrower than a real scene‘s, it is hard to represent the shadow region of scene. Thus, multi-scaled retinex algorithm is used to improve detail and local contrast of the shadow region in an image by dividing the image by its local average images through Gaussian filtering. However, if the chromatic distribution of the original image is not uniform and dominated by a certain chromaticity, the chromaticity of the local average image depends on the dominant chromaticity of original image, thereby the colors of the resulting image are shifted to a complement color to the dominant chromaticity. In this paper, a modified multi-scaled retinex method to reduce the influence of the dominant chromaticity is proposed. In multi-scaled retinex process, the local average images obtained by Gaussian filtering are divided by the average chromaticity values of the original image in order to reduce the influence of dominant chromaticity. Next, the chromaticity of illuminant is estimated in highlight region and the local average images are corrected by the estimated chromaticity of illuminant. In experiment, results show that the proposed method improved the local contrast and detail without color distortion.

  • PDF

Color image enhancement method based on multi-scaled retinex considering chromatic distribution of input image (이미지의 색도 분포를 고려한 다중 Retinex 기반의 칼라 향상 기법)

  • Jang, In-Su;Park, Kee-Hyon;Ha, Yeong-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.845-846
    • /
    • 2008
  • Multi-scaled retinex algorithm is generally used to enhance the local contrast and remove the illuminant component. However, if the chromatic distribution of an original image is not uniform and dominated by a certain chromaticity, the chromaticity of resulting image depends on the dominant chromaticity of the original image, thereby inducing the color distortion. In this paper, a modified multi-scaled retinex method to reduce the influence of the dominant chromaticity in the image is proposed using a average chromaticity of original image and global illuminant chromaticity. In addition, to compensate saturation, the chroma value of the resulting image is enhanced based on that of the original image in the CIELAB space.

  • PDF

Estimation of Illuminant Chromaticity from Single Color Image Using Perceived Illumination and Highlight (인지조명과 광휘점을 이용한 단일 색 영상으로부터의 조명색 추정)

  • Kim, Jeong-Yeop;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.292-303
    • /
    • 2001
  • Object color can be determined by the characteristic of scene illuminant and surface. In this paper, perceived illumination effect is extended and with the highlight analysis, hybrid approach is proposed to estimate the illuminant chromaticity. The perceived illumination approach provides a stable candidate range for the estimation of illuminant chromaticity, however, the accuracy is slightly degraded depending on the image contents. The highlight approach does not depend on the image contents and provides an accurate solution of the scene illuminant chromaticity, however, it is difficult to determine the final solution among many cross-points. These two approaches are in effect mutually compensating. The solution from perceived illumination can be used as a starting point or as base information for the highlight approach to get the final solution.

  • PDF

Illumination estimation based on valid pixel selection from CCD camera response (CCD카메라 응답으로부터 유효 화소 선택에 기반한 광원 추정)

  • 권오설;조양호;김윤태;송근호;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.251-258
    • /
    • 2004
  • This paper proposes a method for estimating the illuminant chromaticity using the distributions of the camera responses obtained by a CCD camera in a real-world scene. Illuminant estimation using a highlight method is based on the geometric relation between a body and its surface reflection. In general, the pixels in a highlight region are affected by an illuminant geometric difference, camera quantization errors, and the non-uniformity of the CCD sensor. As such, this leads to inaccurate results if an illuminant is estimated using the pixels of a CCD camera without any preprocessing. Accordingly, to solve this problem the proposed method analyzes the distribution of the CCD camera responses and selects pixels using the Mahalanobis distance in highlight regions. The use of the Mahalanobis distance based on the camera responses enables the adaptive selection of valid pixels among the pixels distributed in the highlight regions. Lines are then determined based on the selected pixels with r-g chromaticity coordinates using a principal component analysis(PCA). Thereafter, the illuminant chromaticity is estimated based on the intersection points of the lines. Experimental results using the proposed method demonstrated a reduced estimation error compared with the conventional method.

Illumination Chromaticity Estimation in Single and Multiple Colored Image using Dichromatic Line Space (단일 및 다중 컬러 영상에서 이색성 선 공간을 이용한 조명 색도 추정)

  • Choi Yoo Jin;Yoon Kuk-Jin;Kweon In So
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.84-94
    • /
    • 2006
  • The color information in an image changes as the illuminant condition varies. The mechanism to find canonical color of an object by estimating illumination color in an image is generally referred as color constancy. In color constancy, computing robust and precise dichromatic line is most important to estimate illumination chromaticity. In this paper, a novel approach to estimate the color of a single illuminant for noisy and micro-textured images is introduced. An accurate dichromatic line is found by using Dichromatic Line Space (DLS), proposed in this paper. which has information about diffuse chromaticity and illumination chromaticity.

Definition and Analysis of Shadow Features for Shadow Detection in Single Natural Image (단일 자연 영상에서 그림자 검출을 위한 그림자 특징 요소들의 정의와 분석)

  • Park, Ki Hong;Lee, Yang Sun
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.165-171
    • /
    • 2018
  • Shadow is a physical phenomenon observed in natural scenes and has a negative effect on various image processing systems such as intelligent video surveillance, traffic surveillance and aerial imagery analysis. Therefore, shadow detection should be considered as a preprocessing process in all areas of computer vision. In this paper, we define and analyze various feature elements for shadow detection in a single natural image that does not require a reference image. The shadow elements describe the intensity, chromaticity, illuminant-invariant, color invariance, and entropy image, which indicate the uncertainty of the information. The results show that the chromaticity and illuminant-invariant images are effective for shadow detection. In the future, we will define a fusion map of various shadow feature elements, and continue to study shadow detection that can adapt to various lighting levels, and shadow removal using chromaticity and illuminance invariant images.

Illuminant Chromaticity Estimation via Optimization of RGB Channel Standard Deviation (RGB 채널 표준 편차의 최적화를 통한 광원 색도 추정)

  • Subhashdas, Shibudas Kattakkalil;Yoo, Ji-Hoon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.110-121
    • /
    • 2016
  • The primary aim of the color constancy algorithm is to estimate illuminant chromaticity. There are various statistical-based, learning-based and combinational-based color constancy algorithms already exist. However, the statistical-based algorithms can only perform well on images that satisfy certain assumptions, learning-based methods are complex methods that require proper preprocessing and training data, and combinational-based methods depend on either pre-determined or dynamically varying weights, which are difficult to determine and prone to error. Therefore, this paper presents a new optimization based illuminant estimation method which is free from complex preprocessing and can estimate the illuminant under different environmental conditions. A strong color cast always has an odd standard deviation value in one of the RGB channels. Based on this observation, a cost function called the degree of illuminant tinge(DIT) is proposed to determine the quality of illuminant color-calibrated images. This DIT is formulated in such a way that the image scene under standard illuminant (d65) has lower DIT value compared to the same scene under different illuminant. Here, a swarm intelligence based particle swarm optimizer(PSO) is used to find the optimum illuminant of the given image that minimizes the degree of illuminant tinge. The proposed method is evaluated using real-world datasets and the experimental results validate the effectiveness of the proposed method.