• Title/Summary/Keyword: Illuminant Estimation

Search Result 26, Processing Time 0.027 seconds

Estimation of Illuminant Chromaticity by Analysis of Human Skin Color Distribution (피부색 칼라 분포 특성을 이용한 조명 색도 검출)

  • JeongYeop Kim
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.59-71
    • /
    • 2023
  • This paper proposes a method of estimating the illumination chromaticity of a scene in which an image is taken. Storring and Bianco proposed a method of estimating illuminant chromaticity using skin color. Storring et al. used skin color distribution characteristics and black body locus, but there is a problem that the link between the locus and CIE-xy data is reduced. Bianco et al. estimated the illuminant chromaticity by comparing the skin color distribution in standard lighting with the skin color distribution in the input image. This method is difficult to measure and secure as much skin color as possible in various illumination. The proposed method can estimate the illuminant chromaticity for any input image by analyzing the relationship between the skin color information and the illuminant chromaticity. The estimation method is divided into an analysis stage and a test stage, and the data set was classified into an analysis group and a test group and used. Skin chromaticity is calculated by obtaining skin color areas from all input images of the analysis group, respectively. A mapping is obtained by analyzing the correlation between the average set of skin chromaticity and the reference illuminant chromaticity set. The calculated mapping is applied to all input images of the analysis group to estimate the illuminant chromaticity, calculate the error with the reference illuminant chromaticity, and repeat the above process until there is no change in the error to obtain a stable mapping. The obtained mapping is applied to the test group images similar to the analysis stage to estimate the illuminant chromaticity. Since there is no independent data set containing skin area and illuminant reference information, the experimental data set was made using some of the images of the Intel TAU data set. Compared to Finlayson, a similar theory-based existing method, it showed performance improvement of more than 40%, Zhang 11%, and Kim 16%.

  • PDF

Illuminant Chromaticity Estimation via Optimization of RGB Channel Standard Deviation (RGB 채널 표준 편차의 최적화를 통한 광원 색도 추정)

  • Subhashdas, Shibudas Kattakkalil;Yoo, Ji-Hoon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.110-121
    • /
    • 2016
  • The primary aim of the color constancy algorithm is to estimate illuminant chromaticity. There are various statistical-based, learning-based and combinational-based color constancy algorithms already exist. However, the statistical-based algorithms can only perform well on images that satisfy certain assumptions, learning-based methods are complex methods that require proper preprocessing and training data, and combinational-based methods depend on either pre-determined or dynamically varying weights, which are difficult to determine and prone to error. Therefore, this paper presents a new optimization based illuminant estimation method which is free from complex preprocessing and can estimate the illuminant under different environmental conditions. A strong color cast always has an odd standard deviation value in one of the RGB channels. Based on this observation, a cost function called the degree of illuminant tinge(DIT) is proposed to determine the quality of illuminant color-calibrated images. This DIT is formulated in such a way that the image scene under standard illuminant (d65) has lower DIT value compared to the same scene under different illuminant. Here, a swarm intelligence based particle swarm optimizer(PSO) is used to find the optimum illuminant of the given image that minimizes the degree of illuminant tinge. The proposed method is evaluated using real-world datasets and the experimental results validate the effectiveness of the proposed method.

Estimation of Illuminant Chromaticity by Equivalent Distance Reference Illumination Map and Color Correlation (균등거리 기준 조명 맵과 색 상관성을 이용한 조명 색도 추정)

  • Kim Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.267-274
    • /
    • 2023
  • In this paper, a method for estimating the illuminant chromaticity of a scene for an input image is proposed. The illuminant chromaticity is estimated using the illuminant reference region. The conventional method uses a certain number of reference lighting information. By comparing the chromaticity distribution of pixels from the input image with the chromaticity set prepared in advance for the reference illuminant, the reference illuminant with the largest overlapping area is regarded as the scene illuminant for the corresponding input image. In the process of calculating the overlapping area, the weights for each reference light were applied in the form of a Gaussian distribution, but a clear standard for the variance value could not be presented. The proposed method extracts an independent reference chromaticity region from a given reference illuminant, calculates the characteristic values in the r-g chromaticity plane of the RGB color coordinate system for all pixels of the input image, and then calculates the independent chromaticity region and features from the input image. The similarity is evaluated and the illuminant with the highest similarity was estimated as the illuminant chromaticity component of the image. The performance of the proposed method was evaluated using the database image and showed an average of about 60% improvement compared to the conventional basic method and showed an improvement performance of around 53% compared to the conventional Gaussian weight of 0.1.

Image illumination Estimation Using Surface Reflectance (물체 표면 반사를 이용한 영상의 광원 추정)

  • 장현희;안강식;안명석;조석제
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.9-12
    • /
    • 2000
  • This paper proposes an improved image illumination estimation method based on the conventional color constancy algorithm. The most important process of color constancy algorithm is the estimation of the spectral distributions of illuminant of an input image. To estimate of the spectral distributions of illuminant of an input image, we use the brightest pixel values and the values of surface reflectance of an input image using a principal component analysis of the given munsell chips. We estimate a CIE tristimulus values of an input image using the estimated .spectral distribution of illuminant and recover an image by scaling it regularity. From the experimental results, the proposed method was effective in estimating the image illumination

  • PDF

Estimation of Spectral Radiant Distribution of Illumination and Corresponding Color Reproduction According to Viewing Conditions (광원의 분광 방사 분포의 추정과 관찰조건에 따른 대응적 색재현)

  • 방상택;이철희;곽한봉;유미옥;안석출
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.04a
    • /
    • pp.35-44
    • /
    • 2000
  • Because Image on the CRT change under different illuminants, human is difficult to see original color of object. If what is information of used illuminant on capturing object know, image can be transformed according to viewing condition using the linear matrix method. To know information of used illuminant at an image, the spectral radiance of illuminant can be estimated using the linear model of Maloney and Wandell form an image. And then image can be properly transformed it using color appearance model. In this paper, we predict the spectral radiance of illuminant using spectral power distribution of specular light and using surface spectral reflectance at maximum gray area. and then we perform visual experiments for the corresponding color reproduction according to viewing condition. In results, we ensure that the spectral radiance of illuminant at an image can be well estimated using above algorithms and that human visual system is 70% adapted to the monitor's white point and 30% to ambient light when viewing softcopy images.

Illumination estimation based on valid pixel selection from CCD camera response (CCD카메라 응답으로부터 유효 화소 선택에 기반한 광원 추정)

  • 권오설;조양호;김윤태;송근호;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.251-258
    • /
    • 2004
  • This paper proposes a method for estimating the illuminant chromaticity using the distributions of the camera responses obtained by a CCD camera in a real-world scene. Illuminant estimation using a highlight method is based on the geometric relation between a body and its surface reflection. In general, the pixels in a highlight region are affected by an illuminant geometric difference, camera quantization errors, and the non-uniformity of the CCD sensor. As such, this leads to inaccurate results if an illuminant is estimated using the pixels of a CCD camera without any preprocessing. Accordingly, to solve this problem the proposed method analyzes the distribution of the CCD camera responses and selects pixels using the Mahalanobis distance in highlight regions. The use of the Mahalanobis distance based on the camera responses enables the adaptive selection of valid pixels among the pixels distributed in the highlight regions. Lines are then determined based on the selected pixels with r-g chromaticity coordinates using a principal component analysis(PCA). Thereafter, the illuminant chromaticity is estimated based on the intersection points of the lines. Experimental results using the proposed method demonstrated a reduced estimation error compared with the conventional method.

Illumination Compensation Based on Conformity Assessment of Highlight Regions (고휘도 영역의 적합성 평가에 기반한 광원 보상)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2014
  • This paper proposes an illuminant compensation method using a camera noise analysis without segmentation in the dichromatic reflectance model. In general, pixels within highlight regions include large amounts of information on the image illuminant. Thus, the analysis of highlight regions provides a relatively easy means of determining the characteristics of an image illuminant. Currently, conventional methods require regional segmentation and the accuracy of this segmentation then affects the illuminant estimation. Therefore, the proposed method estimates the illuminant without segmentation based on a conformity assessment of highlight regions. Furthermore, error factors, such as noise and sensor non-uniformity, can be reduced by the conformity assessment.

Estimation of Illuminant Chromaticity from Single Color Image Using Perceived Illumination and Highlight (인지조명과 광휘점을 이용한 단일 색 영상으로부터의 조명색 추정)

  • Kim, Jeong-Yeop;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.292-303
    • /
    • 2001
  • Object color can be determined by the characteristic of scene illuminant and surface. In this paper, perceived illumination effect is extended and with the highlight analysis, hybrid approach is proposed to estimate the illuminant chromaticity. The perceived illumination approach provides a stable candidate range for the estimation of illuminant chromaticity, however, the accuracy is slightly degraded depending on the image contents. The highlight approach does not depend on the image contents and provides an accurate solution of the scene illuminant chromaticity, however, it is difficult to determine the final solution among many cross-points. These two approaches are in effect mutually compensating. The solution from perceived illumination can be used as a starting point or as base information for the highlight approach to get the final solution.

  • PDF

A Study on Application of Illumination Models for Color Constancy of Objects (객체의 색상 항등성을 위한 조명 모델 응용에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 2017
  • Color in an image is determined by illuminant and surface reflectance. So, to recover unique color of object, estimation of exact illuminant is needed. In this study, the illumination models suggested to get the object color constancy with the physical illumination model based on physical phenomena. Their characteristics and application limits are presented and the necessity of an extended illumination model is suggested to get more appropriate object colors recovered. The extended illumination model should contain an additional term for the ambient light in order to account for spatial variance of illumination in object images. Its necessity is verified through an experiment under simple lighting environment in this study. Finally, a reconstruction method for recovering input images under standard white light illumination is experimented and an useful method for computing object color reflectivity is suggested and experimented which can be induced from combination of the existing illumination models.

Color recovery of a chromatic digital image based on estimation of spectral distribution of illumination (장원의 분광분포 추정에 기반한 유색 디지털 영상의 색복원)

  • 이철희;이응주
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.97-107
    • /
    • 2001
  • In this paper, an illuminant estimation algorithm of a chromatic digital images proposed. The proposed illumination estimation method has two phases. First, the surface spectral reflectances are recovered. In this case, the surface spectral reflectances recovered are limited to the maximum highlight region (MHR) which is the most achromatic and highly bright region of an image after applying intermediate color constancy process using a modified gray world algorithm. Next, the surface reflectances of the maximum highlight region are estimated using the principal component analysis method along with a set of given Munsell samples. Second, the spectral distribution of reflected lights of MHR is selected from the spectral database. That is a color difference is compared between the reflected lights of the MHR and the spectral database that is the set of reflected lights built by the given Munsell samples and a set of illuminants. Then the closest colors from the spectral database are selected. Finally, the illuminant of an image can be calculated dividing the average spectral distributions of reflected lights of MHR by the average surface reflectances of the MHR. In order to evaluate the proposed algorithm, experiments with artificial and real captured color-biased scenes were performed and numerical comparison examined. The proposed method was effective in estimating the spectral of the given illuminant sunder various illuminants.

  • PDF