• Title/Summary/Keyword: Illumina

Search Result 271, Processing Time 0.021 seconds

Blood transcriptome resources of chinstrap (Pygoscelis antarcticus) and gentoo (Pygoscelis papua) penguins from the South Shetland Islands, Antarctica

  • Kim, Bo-Mi;Jeong, Jihye;Jo, Euna;Ahn, Do-Hwan;Kim, Jeong-Hoon;Rhee, Jae-Sung;Park, Hyun
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • The chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) penguins are distributed throughout Antarctica and the sub-Antarctic islands. In this study, high-quality de novo assemblies of blood transcriptomes from these penguins were generated using the Illumina MiSeq platform. A total of 22.2 and 21.8 raw reads were obtained from chinstrap and gentoo penguins, respectively. These reads were assembled using the Oases assembly platform and resulted in 26,036 and 21,854 contigs with N50 values of 929 and 933 base pairs, respectively. Functional gene annotations through pathway analyses of the Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were performed for each blood transcriptome, resulting in a similar compositional order between the two transcriptomes. Ortholog comparisons with previously published transcriptomes from the $Ad{\acute{e}}lie$ (P. adeliae) and emperor (Aptenodytes forsteri) penguins revealed that a high proportion of the four penguins' transcriptomes had significant sequence homology. Because blood and tissues of penguins have been used to monitor pollution in Antarctica, immune parameters in blood could be important indicators for understanding the health status of penguins and other Antarctic animals. In the blood transcriptomes, KEGG analyses detected many essential genes involved in the major innate immunity pathways, which are key metabolic pathways for maintaining homeostasis against exogenous infections or toxins. Blood transcriptome studies such as this may be useful for checking the immune and health status of penguins without sacrifice.

Responses of Soil Bacterial and Fungal Communities to Organic and Conventional Farming Systems in East China

  • Zhang, Hanlin;Zheng, Xianqing;Bai, Naling;Li, Shuangxi;Zhang, Juanqin;Lv, Weiguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.441-453
    • /
    • 2019
  • Organic farming is considered an effective form of sustainable agricultural management. However, understanding of soil microbial diversity and composition under long-term organic and conventional farming is still limited and controversial. In this study, the Illumina MiSeq platform was applied to investigate the responses of soil bacterial and fungal diversity and compositions to organic farming (OF) and improved conventional farming (CF, applied straw retention) in the rice-wheat rotation system. The results highlighted that the alpha diversity of microbial communities did not differ significantly, except for higher bacterial diversity under OF. However, there were significant differences in the compositions of the soil bacterial and fungal communities between organic and conventional farming. Under our experimental conditions, through the ecological functional analysis of significant different or unique bacterial and fungal taxonomic members at the phyla and genus level, OF enhanced nitrogen, sulfur, phosphorus and carbon dynamic cycling in soil with the presence of Nodosilinea, Nitrospira, LCP-6, HB118, Lyngbya, GOUTA19, Mesorhizobium, Sandaracinobacter, Syntrophobacter and Sphingosinicella, and has the potential to strengthen soil metabolic ability with Novosphingobium. On the other hand, CF increased the intensity of nitrogen cycling with Ardenscatena, KD1-23, Iamia, Nitrosovibrio and Devosia, but enriched several pathogen fungal members, including Coniochaeta, Corallomycetella, Cyclaneusma, Cystostereum, Fistulina, Curvularia and Dissoconium.

Genomic diversity and admixture patterns among six Chinese indigenous cattle breeds in Yunnan

  • Li, Rong;Li, Chunqing;Chen, Hongyu;Liu, Xuehong;Xiao, Heng;Chen, Shanyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1069-1076
    • /
    • 2019
  • Objective: Yunnan is not only a frontier zone that connects China with South and Southeast Asia, but also represents an admixture zone between taurine (Bos taurus) and zebu (Bos indicus) cattle. The purpose of this study is to understand the level of genomic diversity and the extent of admixture in each Yunnan native cattle breed. Methods: All 120 individuals were genotyped using Illumina BovineHD BeadChip (777,962 single nucleotide polymorphisms [SNPs]). Quality control and genomic diversity indexes were calculated using PLINK software. The principal component analysis (PCA) was assessed using SMARTPCA program implemented in EIGENSOFT software. The ADMIXTURE software was used to reveal admixture patterns among breeds. Results: A total of 604,630 SNPs was obtained after quality control procedures. Among six breeds, the highest level of mean heterozygosity was found in Zhaotong cattle from Northeastern Yunnan, whereas the lowest level of heterozygosity was detected in Dehong humped cattle from Western Yunnan. The PCA based on a pruned dataset of 233,788 SNPs clearly separated Dehong humped cattle (supposed to be a pure zebu breed) from other five breeds. The admixture analysis further revealed two clusters (K = 2 with the lowest cross validation error), corresponding to taurine and zebu cattle lineages. All six breeds except for Dehong humped cattle showed different degrees of admixture between taurine and zebu cattle. As expected, Dehong humped cattle showed no signature of taurine cattle influence. Conclusion: Overall, considerable genomic diversity was found in six Yunnan native cattle breeds except for Dehong humped cattle from Western Yunnan. Dehong humped cattle is a pure zebu breed, while other five breeds had admixed origins with different extents of admixture between taurine and zebu cattle. Such admixture by crossbreeding between zebu and taurine cattle facilitated the spread of zebu cattle from tropical and subtropical regions to other highland regions in Yunnan.

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru;Xing, Juyuan;Lu, Jiangkun;Sun, Yingjiao;Zhao, Juanjuan;Miao, Shaohua;Xiong, Qin;Zhang, Yonggang;Zhang, Guishan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.794-808
    • /
    • 2019
  • Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

Observation of Gene Edition by the Transient Expression of CRISPR-Cas9 System During the Development of Tomato Cotyledon (Agrobacterium을 이용한 토마토 떡잎에서 CRISPR-Cas9 시스템의 임시발현 시 토마토 떡잎 발달 단계에 따른 유전자교정 효율 변화)

  • Kim, Euyeon;Yang, So Hee;Park, Hyosun;Koo, Yeonjong
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.186-193
    • /
    • 2021
  • BACKGROUND: Before generating transgenic plant using the CRISPR-Cas9 system, the efficiency test of sgRNAs is recommended to reduce the time and effort for plant transformation and regeneration process. The efficiency of the sgRNA can be measured through the transient expression of sgRNA and Cas9 gene in tomato cotyledon; however, we found that the calculated efficiency showed a large variation. It is necessary to increase the precision of the experiment to obtain reliable sgRNA efficiency data from transient expression. METHODS AND RESULTS: The cotyledon of 11th, 15th, 19th, and 23rd-day-old tomato (Solanum lycopersicum cv. Micro-Tom) were used for expressing CRISPR-Cas9 transiently. The agrobacterium harboring sgRNA for targeting ALS2 gene of tomato was injected through the stomata of leaf adaxial side and the genomic DNA was extracted in 5 days after injection. The target gene edition was identified by amplifying DNA fragment of target region and analyzing with Illumina sequencing method. The target gene editing efficiency was calculated by counting base deletion and insertion events from total target sequence read. CONCLUSION: The CRISPR-Cas9 editing efficiency varied with tomato cotyledon age. The highest efficiency was observed at the 19-day-old cotyledons. Both the median and mean were the highest at this stage and the sample variability was also minimized. We found that the transgene of CRISPR-Cas9 system was strongly correlated with plant leaf development and suggested the optimum cotyledon leaf age for Agrobacterium-mediated transfection in tomato.

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

Reliability of microarray analysis for studying periodontitis: low consistency in 2 periodontitis cohort data sets from different platforms and an integrative meta-analysis

  • Jeon, Yoon-Seon;Shivakumar, Manu;Kim, Dokyoon;Kim, Chang-Sung;Lee, Jung-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.1
    • /
    • pp.18-29
    • /
    • 2021
  • Purpose: The aim of this study was to compare the characteristic expression patterns of advanced periodontitis in 2 cohort data sets analyzed using different microarray platforms, and to identify differentially expressed genes (DEGs) through a meta-analysis of both data sets. Methods: Twenty-two patients for cohort 1 and 40 patients for cohort 2 were recruited with the same inclusion criteria. The 2 cohort groups were analyzed using different platforms: Illumina and Agilent. A meta-analysis was performed to increase reliability by removing statistical differences between platforms. An integrative meta-analysis based on an empirical Bayesian methodology (ComBat) was conducted. DEGs for the integrated data sets were identified using the limma package to adjust for age, sex, and platform and compared with the results for cohorts 1 and 2. Clustering and pathway analyses were also performed. Results: This study detected 557 and 246 DEGs in cohorts 1 and 2, respectively, with 146 and 42 significantly enriched gene ontology (GO) terms. Overlapping between cohorts 1 and 2 was present in 59 DEGs and 18 GO terms. However, only 6 genes from the top 30 enriched DEGs overlapped, and there were no overlapping GO terms in the top 30 enriched pathways. The integrative meta-analysis detected 34 DEGs, of which 10 overlapped in all the integrated data sets of cohorts 1 and 2. Conclusions: The characteristic expression pattern differed between periodontitis and the healthy periodontium, but the consistency between the data sets from different cohorts and metadata was too low to suggest specific biomarkers for identifying periodontitis.

Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle

  • Lim, Hyun-Joo;Kim, Hyun Jong;Lee, Ji Hwan;Lim, Dong Hyun;Son, Jun Kyu;Kim, Eun-Tae;Jang, Gulwon;Kim, Dong-Hyeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • A pregnancy diagnosis is an important standard for control of livestock's reproduction in paricular dairy cattle. High reproductive performance in dairy animals is a essential condition to realize of high life-time production. Pregnancy diagnosis is crucial to shortening the calving interval by enabling the farmer to identify open animals so as to treat or re-breed them at the earliest opportunity. MicroRNAs are short RNA molecules which are critically involved in regulating gene expression during both health and disease. This study is sought to establish the feasible of circulating miRNAs as biomarkers of early pregnancy in cattle. We applied Illumina small-RNA sequencing to profile miRNAs in plasma samples collected from 12 non-pregnant cows ("open" cows: samples were collected before insemination (non-pregnant state) and after pregnancy check at the indicated time points) on weeks 0, 4, 8, 12 and 16. Using small RNA sequencing we identified a total of 115 miRNAs that were differentially expressed weeks 16 relative to non-pregnancy ("open" cows). Weeks 8, 12 and 16 of pregnancy commonly showed a distinct increase in circulating levels of miR-221 and miR-320a. Through genome-wide analyses we have successfully profiled plasma miRNA populations associated with pregnancy in cattle. Their application in the field of reproductive biology has opened up opportunities for research communities to look for pregnancy biomarker molecules in dairy cattle.

Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress

  • Lee, Shin Ae;Kim, Hyeon Su;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.662-672
    • /
    • 2021
  • Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.

Comparative genome characterization of Leptospira interrogans from mild and severe leptospirosis patients

  • Anuntakarun, Songtham;Sawaswong, Vorthon;Jitvaropas, Rungrat;Praianantathavorn, Kesmanee;Poomipak, Witthaya;Suputtamongkol, Yupin;Chirathaworn, Chintana;Payungporn, Sunchai
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.31.1-31.9
    • /
    • 2021
  • Leptospirosis is a zoonotic disease caused by spirochetes from the genus Leptospira. In Thailand, Leptospira interrogans is a major cause of leptospirosis. Leptospirosis patients present with a wide range of clinical manifestations from asymptomatic, mild infections to severe illness involving organ failure. For better understanding the difference between Leptospira isolates causing mild and severe leptospirosis, illumina sequencing was used to sequence genomic DNA in both serotypes. DNA of Leptospira isolated from two patients, one with mild and another with severe symptoms, were included in this study. The paired-end reads were removed adapters and trimmed with Q30 score using Trimmomatic. Trimmed reads were constructed to contigs and scaffolds using SPAdes. Cross-contamination of scaffolds was evaluated by ContEst16s. Prokka tool for bacterial annotation was used to annotate sequences from both Leptospira isolates. Predicted amino acid sequences from Prokka were searched in EggNOG and David gene ontology database to characterize gene ontology. In addition, Leptospira from mild and severe patients, that passed the criteria e-value < 10e-5 from blastP against virulence factor database, were used to analyze with Venn diagram. From this study, we found 13 and 12 genes that were unique in the isolates from mild and severe patients, respectively. The 12 genes in the severe isolate might be virulence factor genes that affect disease severity. However, these genes should be validated in further study.