• Title/Summary/Keyword: Ignition limit

Search Result 174, Processing Time 0.02 seconds

Flmae Visualization of the sector combustor (분할연소기의 화염 가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Kim, Chun-Taek;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.213-216
    • /
    • 2009
  • In order to see the flame behavior in the gas turbine combustor, combustion test was performed by using sector combustor. Ignition test with torch ignition system was carried out at the various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with fixed air mass flow rate. In the test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet air velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity.

  • PDF

Asymptotic Analysis on the Stagnation-Point Ignition of Hydrogen-Oxygen Mixture at High Pressures (고압하에서 수소-산소의 정체점 점화에 관한 이론적 해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1393-1400
    • /
    • 2003
  • Ignition of hydrogen and oxygen in the "third limit" is theoretically investigated in the stagnation point flow with activation energy asymptotics. With the steady-state approximations of H, OH, O and HO$_2$, a two-step reduced kinetic mechanism is derived for the regime lower than the crossover temperature T$_{c}$ at which the rates of production and consumption of all radicals are equal. Appropriate scaling of Damkohler number successfully provides the explicit relationship between pressure, temperature and strain rate at ignition. It is shown that, compared with those for the counterflow, ignition temperatures for the stagnation point flow are considerably increased with increasing the system pressure. This is because ignition in the "third limit" is characterized by the production of reduction of $H_2O$$_2$, which is reduced by wall effect. Strain rate substantially affects ignition temperature because key reaction rates of $H_2O$$_2$ are comparably with its transport rate, while the mixture temperature and the hydrogen composition do not significantly affect ignition temperature.e.

Development and Application of High Energy Ignition System Using Plasma (플라즈마 응용 고 에너지 점화 시스템 개발 및 적용)

  • Kang, Hyehyun;Choi, Duwon;Park, Jinil;Lee, Jonghwa;Park, Kyoungseok;Ahn, Jongyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.148-156
    • /
    • 2014
  • This study is a follow-up study of "Development of Plasma Ignition System" was presented at the 2013 KSAE spring conference. This study compares lean limit of conventional ignition system with plasma ignition system on constant volume combustion test & Engine Combustion test.

Development of a High Energy Ignition System Using Corona Discharge (코로나 방전을 이용한 고에너지 점화 시스템 개발)

  • Park, Kyongseok;Choi, Duwon;Kang, Hyehyun;Lee, Jonghwa;Park, Jinil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.650-655
    • /
    • 2015
  • A high energy ignition system is essential for lean burn or high EGR gasoline engine, which is getting more and more interest to improve fuel economy. The high energy ignition systems comprise plasma jet, laser beam, corona discharge and so on. In this study, a high energy ignition system using corona discharge is developed and tested in a constant volume combustion chamber. The developed system shows extension of lean limit of propane-air mixture and enhencement of combustion speed. Various shape of corona discharge plugs are also tested and compared in this study.

A Study on the Minimum Ignition Limit Voltages for LPG-Air Mixtures by Discharge Sparks in Radio-frequency Circuits (고주파 전기회로의 개폐불꽃에 의한 LPG-공기 혼합가스의 최소점화한계전압에 관한 연구)

  • Lee Chun-ha;Kim Jae-ouk;Jee Sung-ouk;Song Hun-jik;Lee Gang-sik;Lee Dong-in
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.79-84
    • /
    • 1998
  • This paper describes the minimum ignition limit voltages for LPG-Air 5.25[Vol$\%$] mixture gas by discharge sparks in radio-frequency limits using RF power supply and IEC type ignition spark apparatus. As a result, the minimum ignition limit voltages is increased in proportional to the rate of increasing of frequency in LPG-Air mixture gas. Especially, the minimum ignition limit voltages increase remarkably between 3[KHz] and 10[KHz]. It is considered that ignition is caused by one discharge until 3[KHz] and, beyond 3[KHz] ignitiof is caused by more than two discharges. The reason is analyzed that energy loss is caused by existing pause interval between discharges. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof RF machines which are applied tole-equipments and detectors used in dangerous areas but also for datum for its equipment tests.

  • PDF

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.11-17
    • /
    • 2011
  • In order to see flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65 m/s.

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.153-159
    • /
    • 2010
  • In order to see the flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at the various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In the test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65m/s.

  • PDF

Effects of Mixture Flow and Ignition Characteristics on the Engine Performance (혼합기의 유동과 점화특성이 기관성능에 미치는 영향)

  • 이중순;김진영;정성식;하종률;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.37-44
    • /
    • 1998
  • Lean burn combustion is an important concept for improving the fuel consumption and exhaust emissions. However, the lean burning is associated with increased cycle-to-cycle combustion variations due to the ignition instabilities and redu- ced flame propagation rates. Engine stability under lean mixture conditions could be improved by increasing flame speed through enhanced flow characteristics and by securing ignitability with improvement of ignition systems. The effects of flow motion and ignition characteristics on the combustion performances were investigated in a 4-valve SI engine. Flow motions of tumble-swirl were varied with a swirl control valve attached at the inlet ports, while ignition energy and its distribution were controlled in a high -frequency ignition system by changing spark duration and spark frequency. The improvement of lean burn performance by the optimum flow motion and ignition characteristics is discussed.

  • PDF

An Experimental Study on the Minimum Ignition Energy in Low Voltage Spark Discharge by Electrode Material (방전전극 재질과 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be the explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, powder filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy; this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Electrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type(International Electro-technical Commission) spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of electrode make-and-break speed.

An Ignition Characteristics of Slinger Combustor at High Altitude Condition (고고도 조건에서 슬링거 연소기의 점화특성 연구)

  • Lee Kang-Yeop;Lee Dong-Hun;Park Young-Il;Kim Hyung-Mo;Park Poo-Min;Lee Kyung-Jae;Choi Ho-Jin;Chang Hyun-Soo;Choi Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.309-312
    • /
    • 2005
  • High altitude ignition test was performed to understand high altitude ignition characteristics of slinger combustor. To verify ignition limits, test was carried out with variation of altitude and fuel nozzle rotational speed using AETF(Altitude Engine Test Facility) in KARI(Korea Aerospace Research Institute). From the result, the effect of major factors which affect on ignition characteristics was observed. The reduction of ignition limit with increasing altitude and expansion of ignition limit with increasing rotational speed of fuel nozzle was verified. Also minimum rotational speed of fuel nozzle at high altitude must be greater than that of seal level condition.

  • PDF