• 제목/요약/키워드: Ignition energy

검색결과 495건 처리시간 0.022초

희박과급에 의한 수소 예혼합 압축착화 기관의 운전영역 확장에 관한 실험적 연구 (An Experimental Study on Expansion of Operation Range by Lean Boosting for a HCCI H2 Engine)

  • 안병호;이종구;이종민;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.573-579
    • /
    • 2013
  • Hydrogen engine with homogeneous charged compression ignition can achieve high efficiency by high compression ratio and rapid chemical reaction rates spatially. However, it needs to expansion of the operation range with over-all load conditions which is very narrow due to extremely high pressure rise rate. The adoption of the lean boosting in a HCCI $H_2$ engine is expected to be effective in expansion of operation range since minimum compression ratio for spontaneous ignition is decreased by low temperature combustion and increased surround in-cylinder pressure. In order to grasp its possibility by using lean boosting in the HCCI $H_2$ engine, compression ratio required for spontaneous ignition, expansion degree of the operation range and over-all engine performance are experimentally analyzed with the boosting pressure and supply energy. As the results, it is found that minimum compression ratio for spontaneous ignition is down to the compression ratio(${\varepsilon}$=19) of conventional diesel engine due to decreased self-ignition temperature, and operation range is extended to 170% in term of the equivalence ratio and 12 times in term of the supply energy than that of naturally aspirated type. Though indicated thermal efficiency is decreased by reduced compression ratio, it is over at least 46%.

Theoretical Analysis of a Spark Ignition Engine by the Thermodynamic Engine Model

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.55-60
    • /
    • 2015
  • Recent engine development has focused mainly on the improvement of engine efficiency and output emissions. The improvements in efficiency are being made by friction reduction, combustion improvement and thermodynamic cycle modification. Computer simulation has been developed to predict the performance of a spark ignition engine. The effects of various cylinder pressure, heat release, flame temperature, unburned gas temperature, flame properties, laminar burning velocity, turbulence burning velocity, etc. were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion model for a spark ignition engine running with isooctane as a fuel and predicting its behavior.

Experimental Study on the Cycle-to-Cycle Combustion Variations in a Spark Ignition Engine

  • Han, Sung Bin;Hwang, Sung Il
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.197-204
    • /
    • 2013
  • A cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under idling conditions. The coefficient of variation (COV) in indicated mean effective pressure (IMEP) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle drivability problems usually result. For analysis of the cyclic variations in spark ignition engines at idling, the results show that cyclic variability by the COV, COV of IMEP, the lowest normalized value (LNV), and burn angles can help to design the spark ignition engine.

정전기 방전에 의한 개소린-공기혼합기체의 최소착화에너지에 관한 연구 (The Study about The Minimum Ignition Energy for Electrostatic Discharge in The Gasoline-air Mixture)

  • 황명환;이덕출
    • 한국화재소방학회논문지
    • /
    • 제10권1호
    • /
    • pp.3-9
    • /
    • 1996
  • Electrostatic charge is generated in large scale or high speed processes dealing with materials with large resistance, or under complicated condition. Fire and explosion often occur due to electrostatic charge accumulated in flammable gases, vapor, liquids and powder. It is usually very difficult to verify the cause of accidents as well as the prevention. In this study, it is shown that the needle electrode needs the electrode gap from 1.8mm to 3.8mm, sphere electrode and plate electrodes need the electrode gap of 1.9mmfor the minimum ignition energy. The sphere electrode and the plate electrode requires 12.8mJ and 3.2mJ of minimum ignition energy respectively with the electrode gap of 1.1mm. The ignition voltage rises to very large value as the ground resistance increases.

  • PDF

High energy laser heating and ignition study

  • Lee, K.C.;Kim, K.H.;Yoh, J.J.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.525-530
    • /
    • 2008
  • We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short(femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives are used. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine(RDX), triaminotrinitrobenzene(TATB), and octahydrotetranitrotetrazine(HMX) are compared to experimental results. The experimental and numerical results are in good agreement.

  • PDF

Basic Performance Characteristics of HCCI (Homogeneous Charge Compression Ignition) Engine

  • Choi Gyeung Ho;Chung Yon Jong;Kim Ji Moon;Dibbler Robert W.;Han Sung Bin
    • 에너지공학
    • /
    • 제14권4호
    • /
    • pp.226-231
    • /
    • 2005
  • Essentially combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The purpose of this research is to show the effects of fuel flow rate and the temperature of the intake manifold on the performance and exhaust of an HCCI engine.

활성화 에너지가 매우 큰 경우에 점근법을 이용한 반무한체의 점화에 관한 연구 (Asymptotic analysis of ignition of a semi-infinite body for a large activation energy)

  • 백승욱
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.703-707
    • /
    • 1989
  • 본 연구에서는 반무한체에 대하여 활성화 에너지가 매우 큰 경우의 점근법을 적용하여 이 두 변수의 시간에 따른 변화가 점화지연시간에 미치는 영향을 해석적으로 알아보고 참고문헌(1)의 실험치와 비교하고자 한다.

도장 폐기물의 자연발화에 관한 연구 (A Study on Spontaneous Ignition of Painting Waste)

  • 최재욱;목연수;옥곤;사공성호
    • 한국안전학회지
    • /
    • 제14권2호
    • /
    • pp.90-96
    • /
    • 1999
  • The characteristics of spontaneous ignition of painting waste was investigated at constant ambient temperature in oven. As the results of experiments, the spontaneous ignition temperature decreased as the sample vessel became large, and the spontaneous ignition temperature of the sample in small, intermediate and large vessels was $165.5^{\circ}C$, $144.5^{\circ}C$ and $134.5^{\circ}C$ respectively. The apparent activation energy calculated by the Frank-Kamentskii's thermal ignition theory was 34.73 kcal/mol.

  • PDF

저항을 이용한 프로판-공기 혼합가스의 점화한계 개선에 관한 연구 (A Study on the Improved Ignition Limit with Resistor for Propan-air Mixture Gas)

  • 이춘하;오종용;옥경재;지승욱;이광식;심광렬
    • 한국화재소방학회논문지
    • /
    • 제18권1호
    • /
    • pp.18-23
    • /
    • 2004
  • 본 논문은 IEC형 불꽃점화 시험장치를 이용하여 저압 유도회로의 최소 점화한계를 프로판-공기 5.25 Vol.%의 혼합 가스에 대하여 실험적으로 구하였으며, 또한 유도회로의 인덕턴스 L에 안전소자로서 저항을 병렬접속 하였을 경우 프로판-공기 5.25 Vol.%의 혼합 가스에 대한 점화한계 개선효과를 고찰하였다. 그 결과, 최소 점화한계는 전류의 크기에 따라 좌우되었다. 또한, 전원으로부터 공급되는 에너지는 인덕턴스에 우선 축적되고, 그 초과분의 에너지가 폭발성 가스의 점화원으로 작용하였다. 점화한계 개선효과는 인덕턴스가 300mH일 때, 최고 330%의 개선효과가 나타났으며 인덕턴스가 클수록 점화한계 개선효과가 크게 나타났다. 또한 병렬로 접속한 저항의 크기가 적을수록 점화한계 개선 효과가 크다. 본 연구결과는 본질안전 방폭형 전기기기의 연구개발을 위한 기본자료로 활용할 수 있을 뿐만 아니라 이들 기기의 방폭 성능에 대한 시험자료로도 활용이 가능할 것으로 사료된다.

저압방전 불꽃에서 전극재질이 점화에너지에 미치는 영향 (Effect of Electrode Material on the Minimum Ignition Energy in Low-Voltage Spark Discharge)

  • 최상원;이관형;문정기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1394-1397
    • /
    • 1995
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be of explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, sand filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy: this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Eletrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of eletrode make-and-break speed and magnetic field magnitude.

  • PDF