• Title/Summary/Keyword: Ignition delay time

Search Result 195, Processing Time 0.032 seconds

Relationship between Autoigniton Temperature(AIT) and Ignition Delay Time for Acids (산(Acid)류의 자연발화온도와 방화지연시간의 관계)

  • 하동명
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • An accurate knowledge of the AIT(Autoignition temperatures) of chemicals is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The measurement AITs are dependent upon many factors. namely initial temperature. pressure, volume, fuel/air stoichiometry. catalyst material, concentration of vapor, ignition delay time. This study measured the AITs of acids from ignition delay time by using ASTM E659-78 apparatus which was produced in the year 1994. The experiment AITs were a good agreement with the calculated AITs by the proposed equations with a few A.A.P.E.(average absolute percent error) and A.A.D.(average absolute deviation).

Ignition of a solid fuel by thermal radiation (열복사에 의한 고체연료 점화 연구)

  • Kim, Myeong-Hyo;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.294-302
    • /
    • 1998
  • Ignition characteristics of a vertical solid fuel plate with block have been investigated experimentally. For low radiant heat flux, ignition does not occur in a vertical solid fuel plate without block. In the case with the block on a vertical fuel plate, however, ignition can occur by increasing the residence time and the time to absorb the incident radiation flux by fuel vapor in gas phase. The ignition occurs below block and the point varies according to the block location and the block height. As the block height increases, the block locates at higher position, and the hot wall temperature increases, the ignition delay time decreases. Also as the initial temperature of fuel plate rises, the ignition delay time of the solid fuel plate decreases. The temperature distribution of solid fuel plate with block is nearly proportional to the radiant heat flux distribution. Therefore, the effect temperature by natural convection heat transfer is of the same order as that of inhibition of temperature increase by pyrolysis.

Shock Tube and Modeling Study of the Monomethylamine Oxidation at High Temperature

  • Shin, Kuan-Soo;Yoo, Sang-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.293-297
    • /
    • 2004
  • The ignition of monomethylamine was studied in reflected shock waves over the temperature range of 1255- 1579 K and the pressure range of 1.04-1.51 bar. The ignition delay time was measured by the sudden increase of pressure profile and the radiation emitted by OH radicals. The relationship between the ignition delay time and the concentrations of monomethylamine and oxygen was determined in the form of mass-action expressions with an Arrhenius temperature dependence. In contrast to the behavior observed in hydrocarbons, monomethylamine acts to accelerate rather than inhibit its own ignition. And numerical modeling of the ignition of $CH_3NH_2$ has also been carried out to test the several kinetic mechanisms.

Study on Combustion Characteristics of Kick Motor Ignition Transient (킥모터 점화 초기 연소 특성 연구)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.705-706
    • /
    • 2010
  • The design analysis for the ignition transient combustion characteristics of a Kick Motor igniter indicated that the initial pressure condition would delay ignition time within a range from 100 to 500 ms. In the development tests, we confirmed that the igniter could provide the acceptable energy to ignite the main propellant at ignition transient.

  • PDF

Analysis on Ignition Delay Characteristics of Bio Aviation Fuels Manufactured by HEFA Process (HEFA 공정으로 제조된 바이오항공유의 점화지연특성 분석)

  • Kang, Saetbyeol
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.620-627
    • /
    • 2019
  • In this study, ignition delay characteristics of various bio aviation fuels (Bio-ADD, Bio-6308, Bio-7720) produced by HEFA process using different raw materials were compared and analyzed. In order to confirm the feasibility of applying bio aviation fuel to actual system, ignition delay characteristics of petroleum-based aviation fuel (Jet A-1) and blended aviation fuel (50:50, v:v) also analyzed. Ignition delay time of each aviation fuel was measured by using CRU, surface tension measurement and GC/MS and GC/FID analysis were performed to interpret the results. As a result, ignition delay time of Jet A-1 was the longest at all temperature because it contains aromatic compounds about 22.8%. The aromatic compounds can produce benzyl radical which is thermally stable and has low reactivity with oxygen during decomposition process. In the case of bio aviation fuels, ignition delay times were measured similarly because the ratio of n-paraffin/iso-paraffin constituting each aviation fuel is similar (about 0.12) and the composition ratio of cycloparaffin also has no difference. In addition, ignition delay times of blended aviation fuels (50:50, v:v) were measured close to the mean value those of each fuel so it was confirmed that it can be applied without any changing or improving of existing system.

Analysis on Ignition Characteristics According to the Chemical Composition of Bio Jet Fuel Synthesized by F-T Process (F-T 공정으로 합성된 바이오항공유의 화학적 조성에 따른 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.204-210
    • /
    • 2020
  • In this study, the ignition characteristics of bio jet fuel (Bio-7629, Bio-5172) produced by F-T process and petroleum-based jet fuel (Jet A-1) were compared and analyzed. The ignition delay time of each fuel was measured by means of a combustion research unit (CRU) and the results were explained through an analysis of the properties and composition of the fuel. The ignition delay time of Bio-5172 was the shortest while that of Jet A-1 was the longest because Jet A-1 had the highest surface tension and Bio-5172 had the lowest viscosity in terms of fuel properties that could affect the physical ignition delay time. As a result of the analysis of the constituents' type and ratio, 22.8% aromatic compounds in Jet A-1 could generate benzyl radical, which had low reactivity during the oxidation reaction, affecting the increase of ignition delay time. Both Bio-7629 and Bio-5172 were composed of paraffin only, with the ratio of n-/iso- being 0.06 and 0.80, respectively. The lower the degree of branching is in paraffin, the faster the isomerization of peroxy radical is produced during oxidation, which could determine the propagation rate of the ignition. Therefore, Bio-5172, composed of more n-paraffin, possesses shorter ignition delay time compared with Bio-7629.

Measurement of Autoignition Temperature of o-Xylene+n-pentanol System (오토자일렌과 노말펜탄올 계의 최소자연발화온도 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.66-72
    • /
    • 2006
  • An accurate knowledge of the AITs(autoignition temperatures) is important in developing appropriate prevention and control measures in industrial fire protection. The measurement of AITs are dependent upon many factors, namely initial temperature, pressure, vessel size, fuel/air stoichiometry, catalyst, concentration of vapor, ignition delay time. The values of the AITs used process safety are normally the lowest reported, to provide the greatest margin of sefety. This study measured the AITs of o-xylene+n-pentanol system from ignition delay time by using ASTM E659-78 apparatus. The experimental AITs of o-xylene and n-pentanol were $480^{\circ}C\;and\;285^{\circ}C$, respectively. The experiment AITs of o-xylene+n-pentanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

Characteristics of Auto-ignition and Micro-explosion for Array of Emulsion Droplets (유화액적 배열에서의 자발화와 미소폭발의 특성)

  • Jeong, In-Cheol;Lee, Kyung-Hwan;Kim, Jae-Soo
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2007
  • The auto-ignition characteristics and combustion behaviors of one-dimensional array of water-in-fuel droplets suspended in a high temperature chamber have been investigated experimentally with various droplet spacing and number of droplets. The fuels used were pure n-decane and emulsified n-decane with water contents varied from 10% to 30%. All experiments have been performed at 920 K under the atmospheric pressure. The number of droplets in an array were fixed as 3 or 5 and its spacing was varied from 3 mm to 7 mm by 1mm interval. The imaging technique with a high-speed camera has been adopted to measure the ignition delay and flame life time. The micro-explosion behaviors were also observed. As the droplet array sparing increased, the ignition delay also increased regardless of water contents. However, the life time of droplet array decreased as the droplet spacing increased. The full combustion time in array of 3 droplets was found to be longer than that for 5 droplets case due to the longer ignition delay.

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim, In-Cul;Ryoo, Baek-Neung;Jung, Jung-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • Several propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4 psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP propellant by $5{\sim}l5%$ of HMX, HNIW showed that the improvements in ignition delay was over 50% and the threshold pressure was below 0.4 psia. This appears to be due to the characteristics of HMX and HNIW exothermic dissociated at the temperature(${\sim}220^{\circ}C$) love. than that of AP. The ignition substance $B/KNO_3$ was coated thinly on the propellant surface for better ignition performance. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO_3$ suspension solution is coated to the propellant surface.

Ignition behaviour of pulverized coal particle during coal combustion (미분탄 연소의 점화 특성에 관한 연구)

  • Li, Dongfang;Kim, Ryang Gyoon;Song, Ju Hun;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.213-215
    • /
    • 2012
  • As one of the primary fuel sources, oxy-fuel combustion of coal is actively being investigated because of the climate changing problem such like the emission of green house gases. In this paper research about the pulverized coal technology, which is widely used in both power-generating and iron-making processes was studied to invesgate the ignition behaviour of pulverized coal particles during coal combustion as changing the ambient oxygen concentration of the particle. The ignition phenomenon of the coal particles fed into a laminar flow reactor was imaged with a Integrated charged-coupled device (ICCD) camera. The ignition points were determined throught the analysis of the images, and then the ignition delay times were able to be calculated. The experiment results show that a lower oxygen concentration increases the ignition delay time.

  • PDF