• Title/Summary/Keyword: Ignition Characteristics

Search Result 1,148, Processing Time 0.032 seconds

A study on the cyclic variability as a function of ignition energy in spark ignition engines (스파크 점화기관의 점화에너지 변화와 연소 변동과의 관계에 관한 연구)

  • Han, Seong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1647-1655
    • /
    • 1997
  • The cyclic variations can be characterized by the variations in different type of parameters. These parameters may be grouped into four main categories: pressure-related parameters, combustion-related parameters, flame front-related parameters, and exhaust gas-related parameters. One of the resultant effects of the cycle-by-cycle variation in the combustion process, which is the most important with regard to the engine performance characteristics, is the cycle-by-cycle variation in IMEP. This paper uses the repetitive discharge igniter, which can change the ignition energy easily, to study on idle stability in a spark ignition engine. From this device, the 6 number of spark and 0.20 ms spark interval, it is very available for the idle stability.

A study on spark-ignition engine knock measurements (스파크점화 기관의 노킹측정에 관한 연구)

  • 전광민;장원준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.57-64
    • /
    • 1991
  • Spart-ignition engine knock is an abnormal combustion phenomenon originated from auto- ignition of a portion of or the entire end-gas during the later stage of combustion process. And engine knock is accompanied by a vibration of engine cylinder block and a high-pitched metallic noise. Engine knock is characterized in terms of its intensity, its occurrence crank angel and the percentage of engine knock cycles. To characterize engine knock, a precise measurements of cylinder pressure and a statistical analysis of cylinder pressure data are needed. The purpose of this study is to develope a technique to measure engine knock and its characteristics as a function of ignition timing change. A 4-cylinder spark-ignition engine and unleaded gasoline, whose octane number was 94, were used for experiments. To measure engine knock and to analyze engine knock characteristics, cylinder pressure data were sampled by a high speed data acquisition system which was developed in this study. Cylinder pressure data were sampled at each 0.1.deg. crank angle and the number of cycles continuously sampled was 80.

  • PDF

Development of Pyrogen Igniter for Kick Motor

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun;Kim, Yong-Woon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.301-306
    • /
    • 2008
  • A pyrogen igniter was designed to satisfy the required condition of kick motor system for the space launch vehicle. We analyzed the ignition characteristics and performed the combustion tests to verify the internal ballistic performance. In the design process, the arc-image test was carried out to find the sufficient heat flux as varying the initial pressure from 10 to 700kPa. The analysis indicated that the initial pressure condition would delay ignition time within a range from 100 to 500ms. The combustion test with an inert chamber was also performed to understand the ignition characteristics with the variation of the initial pressure of free chamber volume. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test. The result of the ground tests showed that the ignition delay time was within the design range at the atmospheric pressure condition.

  • PDF

Analysis of Group Ignition of Pulverized Coal Particles (미분탄의 집단점화 해석)

  • Suh, K.K.;Kim, H.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 1999
  • Pulverized coal is widely used as the source of electrical power generation and industrial processes. Numerical analysis on the transient ignition process of the cloud of pulverized coal particles in various cases is carried out. Particle radius, initial particle temperature, number density are chosen as major parameters that influence the characteristics of ignition and combustion. The result can be summarized as follow. The ignition occurs at the position that is closed to the surface of the cloud. Maximum temperature and velocity appear at ignition point, and the concentrations of gaseous fuel and oxidizer decrease rapidly near the ignition point. The chemical reaction takes place in wider zone as number density and particle radius decrease. The ignition delay is shortest when particle radius is about $50\;{\mu}m$, and tends to be shorter as number density and initial ambient temperature increase.

  • PDF

An Ignition Characteristics of Slinger Combustor at High Altitude Condition (고고도 조건에서 슬링거 연소기의 점화특성 연구)

  • Lee Kang-Yeop;Lee Dong-Hun;Park Young-Il;Kim Hyung-Mo;Park Poo-Min;Lee Kyung-Jae;Choi Ho-Jin;Chang Hyun-Soo;Choi Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.309-312
    • /
    • 2005
  • High altitude ignition test was performed to understand high altitude ignition characteristics of slinger combustor. To verify ignition limits, test was carried out with variation of altitude and fuel nozzle rotational speed using AETF(Altitude Engine Test Facility) in KARI(Korea Aerospace Research Institute). From the result, the effect of major factors which affect on ignition characteristics was observed. The reduction of ignition limit with increasing altitude and expansion of ignition limit with increasing rotational speed of fuel nozzle was verified. Also minimum rotational speed of fuel nozzle at high altitude must be greater than that of seal level condition.

  • PDF

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim In-Chul;Ryoo Baek-Neung;Jung Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.383-386
    • /
    • 2006
  • Several HTPB/AP and HTPB/AP/HMX propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP composite propellant by $5\sim15%$ of HMX, HNIW showed improvements in the threshold pressure was below 0.4psia. This appears to be due to the exothermic dissociation characteristics of HMX and HNIW at lower temperature $(\sim220^{\circ}C)$ than that of AP. The ignition substance B/KNO3 was coated thinly on the propellant surface for better ignition effect. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO-3$ suspension solution is coated to the propellant surface.

  • PDF

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim, In-Cul;Ryoo, Baek-Neung;Jung, Jung-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • Several propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4 psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP propellant by $5{\sim}l5%$ of HMX, HNIW showed that the improvements in ignition delay was over 50% and the threshold pressure was below 0.4 psia. This appears to be due to the characteristics of HMX and HNIW exothermic dissociated at the temperature(${\sim}220^{\circ}C$) love. than that of AP. The ignition substance $B/KNO_3$ was coated thinly on the propellant surface for better ignition performance. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO_3$ suspension solution is coated to the propellant surface.

Ignition Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 점화특성)

  • Moon, Il-Yoon;Moon, In-Sang;Hong, Moon-Geun;Kang, Sang-Hun;Yoo, Jae-Han;Ha, Seong-Up;Lee, Seon-Mi;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.106-109
    • /
    • 2012
  • It was designed and tested ignition that an oxidizer rich preburner for a staged combustion cycle liquid rocket engine propelled by kerosene and LOx. Operation conditions of the preburner are about 60 of OF ratio and 20 MPa of combustion pressure. Ignition characteristics were compared by propellants flowrate. As the results, the higher propellants flowrate, the shorter the ignition delay time and the higher ignition stiffness. The ignition delay time was affected by incoming the oxidizer flowrate through the refrigerative cooling channels. The oxidizer flowrate from the cooling channels decreased by inflow of combustion gas during initial ignition. The oxidizer flowrate of the cooling channels increases, it is rapid recovery by cooling effect, eventually the ignition delay time decreases.

  • PDF

The Effect of Intake Air Temperature on Knock Characteristics in a Spark-Ignition Engine (흡입 공기 온도변화에 따른 스파크 점화기관의 노킹 특성 변화)

  • 정일영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1993
  • Spark-ignition engine knock is affected by engine operating conditions such as engine speed, spark timing and intake air temperature. In this study the effect of intake air temperature on knock characteristics was studied experimentally using a 4-cylinder carburetor spark-ignition engine. The cylinder pressure data at 2000rpm were taken for intake air temperature range of $30^{\circ}C$ to $80^{\circ}C$ with $10^{\circ}C$ interval. And 80 consecutive cycles were taken at each experimental condition. As the same spark timing, as the intake air temperature increased by $50^{\circ}C$, the mean knock intensity increased about 20kPa. This effect corresponds to that of spark timing advance of 3 crank angle degrees.

  • PDF

A Study on the Ignition Characteristics of Liquid Rocket Engine Thrust Chamber with Regenerative Cooling (액체로켓엔진 재생냉각 연소기의 점화 특성 연구)

  • Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.750-755
    • /
    • 2011
  • The ignition characteristics of liquid rocket engine thrust chambers which have been developed by domestic technology were analyzed. Analysis results showed that low frequency fluctuation appeared in a partial ignition range according to different temperature profiles and vaporous state in the oxidizer manifold with startup sequences. This low frequency fluctuation wasn't developed as a malfunction factor, but this fluctuation is thought to be taken a continuous concern considering interfaces with engine system and launch vehicle.

  • PDF