• Title/Summary/Keyword: Ieodo Ocean Research Station(IORS)

Search Result 22, Processing Time 0.021 seconds

Variation of Underwater Ambient Noise Observed at IORS Station as a Pilot Study

  • Kim, Bong-Chae;Choi, Bok-Kyoung
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.175-179
    • /
    • 2006
  • The Ieodo Ocean Research Station(IORS) is an integrated meteorological and oceanographic observation base which was constructed on the Ieodo underwater rock located at a distance of about 150 km to the south-west of the Mara-do, the southernmost island in Korea. The underwater ambient noise level observed at the IORS was similar to the results of the shallow water surrounding the Korean Peninsula (Choi et al. 2003) and was higher than that of deep ocean (Wenz 1962). The wind dependence of ambient noise was dominant at frequencies of a few kHz. The surface current dependence of ambient noise showed good correlation with the ambient noise in the frequency of 10 kHz. Especially, the shrimp sound was estimated through investigations of waveform and spectrum and its main acoustic energy was about 40 dB larger than ambient noise level at 5 kHz.

Molecular Phylogenetic Analyses of Three Synechococcus Strains Isolated from Seawater near the Ieodo Ocean Research Station

  • Choi, Dong-Han;Noh, Jae-Hoon
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.315-318
    • /
    • 2006
  • Three Synechococcus strains were isolated from seawater near the Ieodo Ocean Research Station (IORS), and their 16S rDNA genes and the internal transcribed spacer (ITS) between the 16S and 23S rRNA genes were sequenced to investigate their phylogenetic relationships. Phylogenetic trees based on the 16S rDNA and ITS sequences showed that they clustered in the main MC-A Synechococcus group (subcluster 5.1), but formed branches differentiating them from the described clades. As the IORS is located in an area affected by diverse water masses, high Synechococcus diversity is expected in the area. Therefore, the IORS might be a good site to study the diversity, physiology, and distribution of the Synechococcus group.

Observation and Analysis of Turbulent Fluxes Observed at Ieodo Ocean Research Station in Autumn 2014 (2014년 가을철 이어도 종합과학기지에서의 난류 플럭스의 관측 및 분석)

  • Yun, Junghee;Oh, Hyoeun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.707-718
    • /
    • 2015
  • This study investigates the characteristics of turbulent fluxes observed at Ieodo Ocean Research Station (IORS) in autumn 2014. The 10 Hz IORS data is quality controlled and calculated to be the 30 minutes turbulent fluxes. The quality control consists of five steps: a weather check, Vickers and Mahrt (VM) sequential check, VM parallel check, flag check, and direction check. Since the IORS is an open-sea station with no orographic influence, there are no significant diurnal variations for the turbulent fluxes and 10 m wind speed. According to stabilities, the unstable and semi-unstable states appear more than 28% and 70% in autumn, respectively and they have strong winds of over $10m\;s^{-1}$. In addition, the turbulent fluxes increase with increasing wind speed. In particular, the latent heat flux and its deviations are clearly shown because the latent heat flux is influenced by the change of both the sea surface roughness and wave height induced by the wind. To demonstrate the changes of the turbulent fluxes before and after typhoon, Vongpong (1419), which is the most intense typhoon affecting the Korean Peninsula in 2014, is considered. The turbulent flux fluctuates in accordance with the location of Vongpong. The turbulent fluxes have a large (small) variation when Vongpong approaches (retreats) at the IORS. The overall results represent that the IORS data helps us understand physical processes related to air-sea interaction by providing the valuable and reliable observed data.

Ship Monitoring around the Ieodo Ocean Research Station Using FMCW Radar and AIS: November 23-30, 2013

  • Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2022
  • The Ieodo Ocean Research Station (IORS) lies between the exclusive economic zone (EEZ) boundaries of Korea, Japan, and China. The geographical positioning of the IORS makes it ideal for monitoring ships in the area. In this study, we introduce ship monitoring results by Automatic Identification System (AIS) and the Broadband 3GTM radar, which has been developed for use in small ships using the Frequency Modulated Continuous Wave (FMCW) technique. AIS and FMCW radar data were collected at IORS from November 23th to 30th, 2013. The acquired FMCW radar data was converted to 2-D binary image format over pre-processing, including the internal and external noise filtering. The ship positions detected by FMCW radar images were passed into a tracking algorithm. We then compared the detection and tracking results from FMCW radar with AIS information and found that they were relatively well matched. Tracking performance is especially good when ships are across from each other. The results also show good monitoring capability for small fishing ships, even those not equipped with AIS or with a dysfunctional AIS.

Typhoon Researches Using the Ieodo Ocean Research Station: Part I. Importance and Present Status of Typhoon Observation (이어도 종합해양과학기지를 활용한 태풍연구: Part I. 태풍관측의 중요성 및 현황)

  • Moon, Il-Ju;Shim, Jae-Seol;Lee, Dong Young;Lee, Jae Hak;Min, In-Ki;Lim, Kwan Chang
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • A recent dramatic increase of natural hazards in the Korean peninsular (KP) due to typhoons have raised necessities for the accurate typhoon prediction. Ieodo ocean research station (IORS) has been constructed in June 2003 at the open ocean where typhoons pass frequently, aiming to observe typhoons before the landfall to the KP and hence to improve the prediction skill. This paper investigates the importance of measurements at the IORS in the typhoon research and forecast. Analysis of the best track data in the N. W. Pacific shows that about one typhoon passes over the IORS per year on the average and 54% of the KP-landfall typhoons during 59 years (1950-2008) passed by the IORS within the range of the 150-km radius. The data observed during the event of typhoons reveals that the IORS can provide useful information for the typhoon prediction prior to the landfall (mainland: before 8-10 hrs, Jeju Island: before 4-6 hrs), which may contribute to improving the typhoon prediction skill and conducting the disaster prevention during the landfall. Since 2003, nine typhoons have influenced the IORS by strong winds above 17m/s. Among them, the typhoon Maemi (0314) was the strongest and brought the largest damages in Korea. The various oceanic and atmospheric observation data at the IORS suggest that the Maemi (0314) has kept the strong intensity until the landfall as passing over warm ocean currents, while the Ewiniar (0603) has weakened rapidly as passing over the Yellow Sea Bottom Cold Water (YSBCW), mainly due to the storm's self-induced surface cooling. It is revealed that the IORS is located in the best place for monitering the patterns of the warm currents and the YSBCW which varies in time and space.

Status of Observation Data at Ieodo Ocean Research Station for Sea Level Study

  • Han, MyeongHee
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.323-343
    • /
    • 2020
  • Observation data measured at Ieodo Ocean Research Station (IORS) have been utilized in oceanographic and atmospheric studies since 2003. Sea level data observed at the IORS have not been paid attention as compared with many other variables such as aerosol, radiation, turbulent flux, wind, wave, fog, temperature, and salinity. Total sea level rises at the IORS (5.6 mm yr-1) from both satellite and tide-gauge observations were higher than those in the northeast Asian marginal seas (5.4 mm yr-1) and the world (4.6 mm yr-1) from satellite observation from 2009 to 2018. The rates of thermosteric, halosteric, and steric sea level rises were 2.7-4.8, -0.7-2.6, 2.3-7.4 mm yr-1 from four different calculating methods using observations. The rising rate of the steric sea level was higher than that of the total sea level in the case with additional data quality control. Calculating the non-steric sea level was not found to yield meaningful results, despite the ability to calculate non-steric sea level by simply subtracting the steric sea level from total sea level. This uncertainty did not arise from the data analysis but from a lack of good data, even though tide, temperature, and salinity data were quality controlled two times by Korea Hydrographic and Oceanography Agency. The status of the IORS data suggests that the maintenance management of observation systems, equipment, and data quality control should be improved to facilitate data use from the IORS.

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.

Quality Enhancement of MIROS Wave Radar Data at Ieodo Ocean Research Station Using ANN

  • Donghyun Park;Kideok Do;Miyoung Yun;Jin-Yong Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.103-114
    • /
    • 2024
  • Remote sensing wave observation data are crucial when analyzing ocean waves, the main external force of coastal disasters. Nevertheless, it has limitations in accuracy when used in low-wind environments. Therefore, this study collected the raw data from MIROS Wave and Current Radar (MWR) and wave radar at the Ieodo Ocean Research Station (IORS) and applied the optimal filter by combining filters provided by MIROS software. The data were validated by a comparison with South Jeju ocean buoy data. The results showed it maintained accuracy for significant wave height, but errors were observed in significant wave periods and extreme waves. Hence, this study used an artificial neural network (ANN) to improve these errors. The ANN was generalized by separating the data into training and test datasets through stratified sampling, and the optimal model structure was derived by adjusting the hyperparameters. The application of ANN effectively improved the accuracy in significant wave periods and high wave conditions. Consequently, this study reproduced past wave data by enhancing the reliability of the MWR, contributing to understanding wave generation and propagation in storm conditions, and improving the accuracy of wave prediction. On the other hand, errors persisted under high wave conditions because of wave shadow effects, necessitating more data collection and future research.

Validation of Satellite Altimeter-Observed Sea Surface Height Using Measurements from the Ieodo Ocean Research Station (이어도 해양과학기지 관측 자료를 활용한 인공위성 고도계 해수면고도 검증)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Seok Jae Gwon;Hyun-Ju Oh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.467-479
    • /
    • 2023
  • Satellite altimeters have continuously observed sea surface height (SSH) in the global ocean for the past 30 years, providing clear evidence of the rise in global mean sea level based on observational data. Accurate altimeter-observed SSH is essential to study the spatial and temporal variability of SSH in regional seas. In this study, we used measurements from the Ieodo Ocean Research Station (IORS) and validate SSHs observed by satellite altimeters (Envisat, Jason-1, Jason-2, SARAL, Jason-3, and Sentinel-3A/B). Bias and root mean square error of SSH for each satellite ranged from 1.58 to 4.69 cm and 6.33 to 9.67 cm, respectively. As the matchup distance between satellite ground tracks and the IORS increased, the error of satellite SSHs significantly amplified. In order to validate the correction of the tide and atmospheric effect of the satellite data, the tide was estimated using harmonic analysis, and inverse barometer effect was calculated using atmospheric pressure data at the IORS. To achieve accurate tidal corrections for satellite SSH data in the seas around the Korean Peninsula, it was confirmed that improving the accuracy of tide data used in satellites is necessary.

Estimation of the PAR Irradiance Ratio and Its Variability under Clear-sky Conditions at Ieodo in the East China Sea

  • Byun, Do-Seong;Cho, Yang-Ki
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.235-244
    • /
    • 2006
  • Determining 'photosynthetically active radiation' (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM. Preliminary results suggest that the use of simple PAR irradiance-ratio values is appropriate in calculating phytoplankton productivity as follows: an average of $0.44\;({\pm}0.01)$ in January to an average of $0.48\;({\pm}0.01)$ in July, with average daily variabilities over these periods of about $0.016\;({\pm}0.008)$ and $0.025\;({\pm}0.008)$, respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.